Bone-Modifying Agents and Anticancer Agents with Bone Effects

  • Daniele SantiniEmail author
  • Francesco Pantano
  • Michele Iuliani
  • Giulia Ribelli
  • Paolo Manca
  • Bruno Vincenzi
  • Giuseppe Tonini


Bone metastases are virtually incurable resulting in significant disease morbidity, reduced quality of life, and mortality. Bone provides a unique microenvironment whose local interactions with tumor cells offer novel targets for therapeutic interventions. Increased understanding of the pathogenesis of bone disease has led to the discovery and clinical utility of bone-targeted agents other than bisphosphonates and denosumab, currently the standard of care in this setting.

In this chapter, we present the recent advances in molecular-targeted therapies focusing on therapies that inhibit bone resorption and/or stimulate bone formation and novel antitumor agents that exert significant effects on skeletal metastases, nowadays available in clinical practice or in phase of development.


  1. 1.
    Keller ET, Zhang J, Cooper CR, et al. Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev. 2001;20:333–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Yin JJ, Pollock CB, Kelly K. Mechanisms of cancer metastasis to the bone. Cell Res. 2005;15:57–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia. 2005;10:169–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Kingsley LA, Fournier PG, Chirgwin JM, et al. Molecular biology of bone metastasis. Mol Cancer Ther. 2007;6:2609–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Mercer RR, Miyasaka C, Mastro AM. Metastatic breast cancer cells suppress OBL adhesion and differentiation. Clin Exp Metastasis. 2004;21:427–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Bu G, Lu W, Liu CC, et al. Breast cancer-derived Dickkopf1 inhibits OBL differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases. Int J Cancer. 2008;123:1034–42.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mastro AM, Gay CV, Welch DR, et al. Breast cancer cells induce OBL apoptosis: a possible contributor to bone degradation. J Cell Biochem. 2004;91:265–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Hall CL, Bafico A, Dai J, et al. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res. 2005;65:7554–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Hall CL, Kang S, MacDougald OA, et al. Role of Wnts in prostate cancer bone metastases. J Cell Biochem. 2006;97:661–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev. 2006;25:521–9. Scholar
  12. 12.
    Park SI, Soki FN, McCauley LK. Roles of bone marrow cells in skeletal metastases: no longer bystanders. Cancer Microenviron. 2011;4:237–46. Scholar
  13. 13.
    Shen Y, Nilsson SK. Bone, microenvironment and hematopoiesis. Curr Opin Hematol. 2012;19:250–5. Scholar
  14. 14.
    Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93. Scholar
  15. 15.
    Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11:411–25.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coleman RE, McCloskey EV. Bisphosphonates in oncology. Bone. 2011;49:71–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Roelofs AJ, Thompson K, Gordon S, et al. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12:6222s–30s.CrossRefPubMedGoogle Scholar
  18. 18.
    Luckman SP, Hughes DE, Coxon FP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13:581–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Mönkkönen H, Auriola S, Lehenkari P, et al. A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol. 2006;147:437–45.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Body JJ, Diel IJ, Lichinitzer M, et al. Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomised, placebo-controlled phase III studies. Br J Cancer. 2004;90:1133–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Coleman R, Gnant M, Morgan G, et al. Effects of bone-targeted agents on cancer progression and mortality. J Natl Cancer Inst. 2012;104:1059–67.CrossRefPubMedGoogle Scholar
  22. 22.
    Wong MH, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev. 2012;2:CD003474.Google Scholar
  23. 23.
    Kohno N, Aogi K, Minami H, et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol. 2005;23:3314–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer. 2000;88:1082–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Body JJ, Diel IJ, Lichinitser MR, et al. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann Oncol. 2003;14:1399–405.CrossRefPubMedGoogle Scholar
  26. 26.
    Heras P, Kritikos K, Hatzopoulos A, Georgopoulou AP. Efficacy of ibandronate for the treatment of skeletal events in patients with metastatic breast cancer. Eur J Cancer Care (Engl). 2009;18:653–6.CrossRefGoogle Scholar
  27. 27.
    Kristensen B, Ejlertsen B, Groenvold M, et al. Oral clodronate in breast cancer patients with bone metastases: a randomized study. J Intern Med. 1999;246:67–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Paterson AH, Powles TJ, Kanis JA, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993;11:59–65.CrossRefPubMedGoogle Scholar
  29. 29.
    Tubiana-Hulin M, Beuzeboc P, Mauriac L, et al. Double-blinded controlled study comparing clodronate versus placebo in patients with breast cancer bone metastases. Bull Cancer. 2001;88:701–7.PubMedGoogle Scholar
  30. 30.
    Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Martin M, Bell R, Bourgeois H, et al. Bone-related complications and quality of life in advanced breast cancer: results from a randomized phase III trial of denosumab versus zoledronic acid. Clin Cancer Res. 2012;18:4841–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Poznak CH, Von Roenn JH, Temin S. American Society of Clinical Oncology clinical practice guideline update: recommendations on the role of bone-modifying agents in metastatic breast cancer. J Oncol Pract. 2011;7:117–21.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Coleman R, Body JJ, Aapro M, et al. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25(suppl 3):iii124–i37.CrossRefPubMedGoogle Scholar
  34. 34.
    Gralow JR, Biermann JS, Farooki A, et al. NCCN Task Force report: bone health in cancer care. J Natl Compr Cancer Netw. 2013;11(suppl 3):S1–50. quiz S51CrossRefGoogle Scholar
  35. 35.
    Saad F, Gleason DM, Murray R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94(19):1458–68.CrossRefPubMedGoogle Scholar
  36. 36.
    Saad F, Gleason DM, Murray R, et al. Long term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone refractory prostate carcinoma. J Natl Cancer Inst. 2004;96(11):879–82.CrossRefPubMedGoogle Scholar
  37. 37.
    Kachnic LA, Pugh SL, Tai P, Smith M, Gore E, Shah AB, Martin AG, Kim HE, Nabid A, Lawton CA. RTOG 0518: randomized phase III trial to evaluate zoledronic acid for prevention of osteoporosis and associated fractures in prostate cancer patients. Prostate Cancer Prostatic Dis. 2013;16(4):382–6. Epub 2013 Oct 1CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    James ND, Sydes MR, Clarke NW, Mason MD, STAMPEDE investigators, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Smith MR, Halabi S, Ryan CJ, Hussain A, et al. Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol. 2014;32(11):1143–50.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu XH, Kirschenbaum A, Yao S, et al. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology. 2005;146:1991–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Gonzalez-Suarez E, Jacob AP, Jones J, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Schramek D, Leibbrandt A, Sigl V, et al. OCL differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468:98–102.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nguyen DX, Bos PD, Massagu J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.CrossRefGoogle Scholar
  44. 44.
    Loser K, Mehling A, Loeser S, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12:1372–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Akiyama T, Shimo Y, Yanai H, et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity. 2008;29:423–37.CrossRefPubMedGoogle Scholar
  46. 46.
    Knoop KA, Kumar N, Butler BR, et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol. 2009;183:5738–47.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29:1125–32.CrossRefPubMedGoogle Scholar
  49. 49.
    Lipton A, Fizazi K, Stopeck AT, et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur J Cancer. 2016;53:75–83.CrossRefPubMedGoogle Scholar
  50. 50.
    Smith MR, Saad F, Oudard S, Shore N, et al. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol. 2013;31(30):3800–6.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Montgomery RB, Mostaghel EA, Vessella R, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–54.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Coffey K, Robson CN. Regulation of the androgen receptor by post-translational modifications. J Endocrinol. 2012;215:221–37.CrossRefPubMedGoogle Scholar
  53. 53.
    Liu LL, Xie N, Sun S, et al. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene. 2014;33:3140–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Waltering KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol. 2012;360:38–43.CrossRefPubMedGoogle Scholar
  55. 55.
    Drake JM, Graham NA, Stoyanova T, et al. Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression. Proc Natl Acad Sci U S A. 2012;109:1643–64.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    De Bono S, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Scher HI, Beer TM, Higano CS, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375:1437–46.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fizazi K, Scher HI, Molina A, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13:983–92.CrossRefPubMedGoogle Scholar
  59. 59.
    Ryan CJ, Smith MR, de Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.CrossRefPubMedGoogle Scholar
  60. 60.
    Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.CrossRefPubMedGoogle Scholar
  61. 61.
    Rowlands MG, Barrie SE, Chan F, et al. Esters of 3-pyridylacetic acid that combine potent inhibition of 17 alpha-hydroxylase/C17,20-lyase (cytochrome P45017 alpha) with resistance to esterase hydrolysis. J Med Chem. 1995;38:4191–7.CrossRefPubMedGoogle Scholar
  62. 62.
    O’Donnell A, Judson I, Dowsett M, et al. Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer. 2004;90:2317–25.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Barrie SE, Potter GA, Goddard PM, et al. Pharmacology of novel steroidal inhibitors of cytochrome P450(17) alpha (17 alpha-hydroxylase/C17-20 lyase). J Steroid Biochem Mol Biol. 1994;50:267–73.CrossRefPubMedGoogle Scholar
  64. 64.
    Attard G, Reid AH, Auchus RJ, et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J Clin Endocrinol Metab. 2012;97:507–16.CrossRefPubMedGoogle Scholar
  65. 65.
    Iuliani M, Pantano F, Buttigliero C, et al. Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget. 2015;6(14):12520–8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Beer TM, Armstrong AJ, Rathkopf DE, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Loriot Y, Miller K, Sternberg CN, et al. Effect of enzalutamide on health-related quality of life, pain, and skeletal-related events in asymptomatic and minimally symptomatic, chemotherapy-naive patients with metastatic castration-resistant prostate cancer (PREVAIL): results from a randomised, phase 3 trial. Lancet Oncol. 2015;16:509–21.CrossRefPubMedGoogle Scholar
  68. 68.
    Moriceau G, Ory B, Mitrofan L, et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (everolimus): pivotal role of the prenylation process. Cancer Res. 2010;70:10329–39.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF, TNF-alpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10:1165–77.CrossRefPubMedGoogle Scholar
  70. 70.
    Bertoldo F, Silvestris F, Ibrahim T, et al. Targeting bone metastatic cancer: role of the mTOR pathway. Biochim Biophys Acta. 2014;1845(2):248–54.PubMedGoogle Scholar
  71. 71.
    Kneissel M, Luong-Nguyen NH, Baptist M, et al. Everolimus sup-presses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 2004;35:1144–56.CrossRefPubMedGoogle Scholar
  72. 72.
    Mogi M, Kondo A. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells. Biochem Biophys Res Commun. 2009;384:82–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Ory B, Moriceau G, Redini F, Heymann D. mTOR inhibitors(rapamycin and its derivatives) and nitrogen containing bisphosphonates: bi-functional compounds for the treatment of bone tumours. Curr Med Chem. 2007;14:1381–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Gnant M, Baselga J, Rugo HS, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2. J Natl Cancer Inst. 2013;105:654–63.CrossRefPubMedGoogle Scholar
  76. 76.
    Maass N, Harbeck N, Mundhenke C, et al. Everolimus as treatment for breast cancer patients with bone metastases only: results of the phase II RADAR study. J Cancer Res Clin Oncol. 2013;139:2047–56.CrossRefPubMedGoogle Scholar
  77. 77.
    Sartor O, Reid RH, Bushnell DL, et al. Safety and efficacy of repeat administration of samarium Sm-153 lexidronam to patients with metastatic bone pain. Cancer. 2007;109:637–43.CrossRefPubMedGoogle Scholar
  78. 78.
    Silberstein EB. Dosage and response in radiopharmaceutical therapy of painful osseous metastases. J Nucl Med. 1996;37:249–52.PubMedGoogle Scholar
  79. 79.
    James ND, Pirrie S, Barton D, et al. Clinical outcomes in patients with castrate-refractory prostate cancer (CRPC) metastatic to bone randomized in the factorial TRAPEZE trial to docetaxel (D) with strontium-89 (Sr89), zoledronic acid (ZA), neither, or both (ISRCTN 12808747). ASCO meeting abstract. J Clin Oncol. 2013;31(Suppl).CrossRefGoogle Scholar
  80. 80.
    Allen BJ. Clinical trials of targeted alpha therapy for cancer. Rev Recent Clin Trials. 2008;3:185–91.CrossRefPubMedGoogle Scholar
  81. 81.
    Henriksen G, Breistol K, Bruland OS, et al. Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer Res. 2002;62:3120–5.PubMedGoogle Scholar
  82. 82.
    Nilsson S, Franzen L, Parker C, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.CrossRefPubMedGoogle Scholar
  83. 83.
    Larsen RH, Saxtorph H, Skydsgaard M, et al. Radiotoxicity of the alpha-emitting bone-seeker 223Ra injected intravenously into mice: histology, clinical chemistry and hematology. In Vivo. 2006;20:325–31.PubMedGoogle Scholar
  84. 84.
    Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefPubMedGoogle Scholar
  85. 85.
    Hoskin P, Sartor O, O'Sullivan JM, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014;15:1397–406.CrossRefPubMedGoogle Scholar
  86. 86.
    Gartrell BA, Coleman R, Efstathiou E, et al. Metastatic prostate cancer and the bone: significance and therapeutic options. Eur Urol. 2015;68(5):850–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Spencer GJ, Utting JC, Etheridge SL, et al. Wnt signalling in OBLs regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci. 2006;119:1283–96.CrossRefPubMedGoogle Scholar
  88. 88.
    Fulciniti M, Tassone P, Hideshima T, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009;114(2):371–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Iyer SP, Beck JT, Stewart AK, et al. A phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol. 2014;167:366–75.CrossRefPubMedGoogle Scholar
  90. 90.
    Zhang S, Zhau HE, Osunkoya AO, et al. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol Cancer. 2010;9:9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Knudsen BS, Gmyrek GA, Inra J, et al. High expression of the Met receptor in prostate cancer metastasis to bone. Urology. 2002;60:1113–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Adamopoulos IE, Xia Z, Lau YS, et al. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochem Biophys Res Commun. 2006;350:478–83.CrossRefPubMedGoogle Scholar
  93. 93.
    Aenlle KK, Curtis KM, Roos BA, et al. Hepatocyte growth factor and p38 promote osteogenic differentiation of human mesenchymal stem cells. Mol Endocrinol. 2014;28:722–30.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Chen HT, Tsou HK, Chang CH, et al. Hepatocyte growth factor increases osteopontin expression in human OBLs through PI3K, Akt, c-Src, and AP-1 signaling pathway. PLoS One. 2012;7:e38378.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Grano M, Galimi F, Zambonin G, et al. Hepatocyte growth factor is a coupling factor for OCLs and OBLs in vitro. Proc Natl Acad Sci U S A. 1996;93:7644–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Smith DC, Smith MR, Sweeney C, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31:412–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Smith MR, De Bono JS, Sternberg CN, et al. Final analysis of COMET-1: cabozantinib (Cabo) versus prednisone (Pred) in metastatic castration-resistant prostate cancer (mCRPC) patients (pts) previously treated with docetaxel (D) and abiraterone (A) and/or enzalutamide (E). In: 2015 genitourinary cancers symposium.Google Scholar
  98. 98.
    Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, Hammers H, Hutson TE, Lee JL, Peltola K, Roth BJ, Bjarnason GA, Geczi L, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1814–23. Scholar
  99. 99.
    Santini D, Tonini G. Treatment of advanced renal-cell carcinoma. N Engl J Med. 2016;374:888–9. Scholar
  100. 100.
    Motzer RJ, Escudier B, Choueiri TK. Treatment of advanced renal-cell carcinoma. N Engl J Med. 2016;374:889–90. Scholar
  101. 101.
    Fioramonti M, Santini D, Iuliani M, et al. Cabozantinib targets bone microenvironment modulating human osteoclast and osteoblast functions. Oncotarget. 2017;8(12):20113–21. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Daniele Santini
    • 1
    Email author
  • Francesco Pantano
    • 1
  • Michele Iuliani
    • 1
  • Giulia Ribelli
    • 1
  • Paolo Manca
    • 1
  • Bruno Vincenzi
    • 1
  • Giuseppe Tonini
    • 1
  1. 1.Medical Oncology DepartmentCampus Bio-Medico University of RomeRomeItaly

Personalised recommendations