Advertisement

Pathologic Versus Impending Fracture

  • Maria Silvia Spinelli
  • Andrea Piccioli
Chapter

Abstract

The constant improvement of medical therapies has led to the longer survival of patients affected by carcinoma and a consequent increase in the number of patients with bone metastasis. In the natural history of bone metastatic patients they Skeletal Related Events (SREs) are likely to occur. SREs are: pathologic fracture of the long bones, the need of surgical procedures on the bone, spinal compression, and radiotherapy on the bone. SREs have a well-documented negative impact on clinical outcomes and on pain, reduce the quality of life and survival, and increase morbidity. The most frequent complication among SREs is the pathological fracture, which is defined as a fracture that occurs spontaneously or with a low-energy trauma in the site of a preexisting bone lesion. For the patient with bone metastasis, a pathological fracture is always a dramatic event and should be considered a matter of urgency in the orthopedic treatment of these patients. The aim of a high quality of care is to prevent a pathologic fracture; given that the bone lesions are known, these should be treated before the bone fractures with a preventive osteosynthesis. This imminent risk of fracture that may occur in daily activities is a specific diagnosis and is given the name impending fracture.The aim of this chapter is to focus on different aspects of pathologic and impending fracture, including diagnostic and clinical aspects, the impact on survival and on health resource utilization.

Keywords

Pathologic fracture Impending fracture Bone metastasis Survival estimation Economic burden 

References

  1. 1.
    Healey JH, Brown HK. Complications of bone metastases: surgical management. Cancer. 2000;88(12 Suppl):2940–51.CrossRefPubMedGoogle Scholar
  2. 2.
    Matza LS, Van Brunt K, Chung K, Brazier J, Braun AH, Currie B, et al. Health state utilities for skeletal-related events associated with bone metastases. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(15_suppl):e16620.CrossRefGoogle Scholar
  3. 3.
    Yong M, Jensen AØ, Jacobsen JB, Nørgaard M, Fryzek JP, Sørensen HT. Survival associated with bone metastases and skeletal-related events in breast cancer patients: a population-based cohort study in Denmark (1999 - 2007). J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(15_suppl):e22210.Google Scholar
  4. 4.
    Fryzek JP, Cetin K, Nørgaard M, Jensen AØ, Jacobsen J, Sørensen HT. The prognostic significance of bone metastases and skeletal-related events (SREs) in prostate cancer survival: a population-based historical cohort study in Denmark (1999-2007). J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(15_suppl):5160.Google Scholar
  5. 5.
    Zustovich F, Pastorelli D. Therapeutic management of bone metastasis in prostate cancer: an update. Expert Rev Anticancer Ther. 2016;16(11):1199–211.CrossRefGoogle Scholar
  6. 6.
    Zhiyu W, Rui Z, Shuai W, Hui Z. Surgical treatment of patients with lung cancer and bone metastases: a prospective, observational study. Lancet (Lond Engl). 2016;388(Suppl 1):S42.CrossRefGoogle Scholar
  7. 7.
    Mokdad AH, Dwyer-Lindgren L, Fitzmaurice C, Stubbs RW, Bertozzi-Villa A, Morozoff C, et al. Trends and patterns of disparities in cancer mortality among US counties, 1980-2014. JAMA. 2017;317(4):388–406.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li S, Peng Y, Weinhandl ED, Blaes AH, Cetin K, Chia VM, et al. Estimated number of prevalent cases of metastatic bone disease in the US adult population. Clin Epidemiol. 2012;4:87–93.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Piccioli e coll. Documento siot sul trattamento delle metastasi ossee. GIOT; 2012.Google Scholar
  10. 10.
    Manglani HH, Marco RA, Picciolo A, Healey JH. Orthopedic emergencies in cancer patients. Semin Oncol. 2000;27(3):299–310.PubMedGoogle Scholar
  11. 11.
    Piccioli A, Rossi B, Scaramuzzo L, Spinelli MS, Yang Z, Maccauro G. Intramedullary nailing for treatment of pathologic femoral fractures due to metastases. Injury. 2014;45(2):412–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Piccioli A, Maccauro G, Scaramuzzo L, Graci C, Spinelli MS. Surgical treatment of impending and pathological fractures of tibia. Injury. 2013;44(8):1092–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Piccioli A, Spinelli MS, Maccauro G. Impending fracture: A difficult diagnosis. Injury. 2014;45(Suppl 6):S138–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Fidler M. Incidence of fracture through metastases in long bones. Acta Orthop Scand. 1981;52(6):623–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Menck H, Schulze S, Larsen E. Metastasis size in pathologic femoral fractures. Acta Orthop Scand. 1988;59(2):151–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Harrington KD. Impending pathologic fractures from metastatic malignancy: evaluation and management. Instr Course Lect. 1986;35:357–81.PubMedGoogle Scholar
  17. 17.
    Mirels H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop. 1989;249:256–64.Google Scholar
  18. 18.
    Damron TA, Morgan H, Prakash D, Grant W, Aronowitz J, Heiner J. Critical evaluation of Mirels’ rating system for impending pathologic fractures. Clin Orthop. 2003;415(Suppl):S201–7.CrossRefGoogle Scholar
  19. 19.
    Liebl H, Garcia EG, Holzner F, Noel PB, Burgkart R, Rummeny EJ, et al. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures. PLoS One. 2015;10(2):e0116907.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Koivumäki JEM, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, et al. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone. 2012;50(4):824–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, et al. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone. 2009;45(2):226–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Hechmati G, Cure S, Gouépo A, Hoefeler H, Lorusso V, Lüftner D, et al. Cost of skeletal-related events in European patients with solid tumours and bone metastases: data from a prospective multinational observational study. J Med Econ. 2013;16(5):691–700.CrossRefPubMedGoogle Scholar
  24. 24.
    Body J-J, Pereira J, Sleeboom H, Maniadakis N, Terpos E, Acklin YP, et al. Health resource utilization associated with skeletal-related events: results from a retrospective European study. Eur J Health Econ HEPAC Health Econ Prev Care. 2016;17(6):711–21.CrossRefGoogle Scholar
  25. 25.
    Spinelli MS, Campi S, Sacchetti FM, Rossi B, Di Martino A, Giannini S, et al. Pathologic and impending fractures: biological and clinical aspects. J Biol Regul Homeost Agents. 2015;29(4 Suppl):73–8.PubMedGoogle Scholar
  26. 26.
    Blank AT, Lerman DM, Patel NM, Rapp TB. Is prophylactic intervention more cost-effective than the treatment of pathologic fractures in metastatic bone disease? Clin Orthop Relat Res. 2016;474(7):1563–70.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Piccioli A. CORR Insights®: what factors are associated with quality of life, pain interference, anxiety, and depression in patients with metastatic bone disease? Clin Orthop. 2017;475:508–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Nathan SS, Healey JH, Mellano D, Hoang B, Lewis I, Morris CD, et al. Survival in patients operated on for pathologic fracture: implications for end-of-life orthopedic care. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(25):6072–82.CrossRefGoogle Scholar
  29. 29.
    Oefelein MG, Ricchiuti V, Conrad W, Resnick MI. Skeletal fractures negatively correlate with overall survival in men with prostate cancer. J Urol. 2002;168(3):1005–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Saad F, Lipton A, Cook R, Chen Y-M, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110(8):1860–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Forsberg JA, Wedin R, Bauer HCF, Hansen BH, Laitinen M, Trovik CS, et al. External validation of the Bayesian Estimated Tools for Survival (BETS) models in patients with surgically treated skeletal metastases. BMC Cancer. 2012;12:493.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Forsberg JA, Sjoberg D, Chen Q-R, Vickers A, Healey JH. Treating metastatic disease: which survival model is best suited for the clinic? Clin Orthop. 2013;471(3):843–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Ibrahim T, Ricci M, Scarpi E, Bongiovanni A, Ricci R, Riva N, et al. RANKL: a promising circulating marker for bone metastasis response. Oncol Lett. 2016;12(4):2970–5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Maria Silvia Spinelli
    • 1
  • Andrea Piccioli
    • 2
  1. 1.Traumatology and Orthopaedic Unit“Fatebenefratelli - Isola Tiberina” HospitalRomeItaly
  2. 2.General Direction of Health ProgramItalian Ministry of HealthRomeItaly

Personalised recommendations