Advertisement

CBCT and Micro-CT on the Study of Root Canal Anatomy

  • Jorge N. R. MartinsEmail author
  • Marco A. Versiani
Chapter

Abstract

A thorough understanding of the canal morphology and its variations in all groups of teeth is a basic requirement for the success of the endodontic therapy. Over the last century, the complexity of the root canal system was well documented using several methods including three-dimensional wax models, conventional and digital radiography, resin injection, macroscopic and microscopic evaluations, tooth sectioning, clearing techniques, radiographic methods with radiopaque contrast media, and scanning electron microscopy. These techniques have been used successfully over many years, but their destructive nature produced irreversible changes in the specimens and many artifacts. Technological advancements in three-dimensional computed tomographic imaging have given rise to more accurate methods for clinical and laboratory evaluations of tooth anatomy. In the last decades, cone beam computed tomography (CBCT) and high-resolution micro-computed tomography (micro-CT) have gained increasing significance in dental research allowing the detailed study of canal anatomy because they offered a nondestructive reproducible technique that could be applied quantitatively as well as qualitatively for two- and three-dimensional accurate assessment of the root canal system. This chapter is focused on the description of the main results obtained in the in vivo and ex vivo research studies on the root and root canal anatomy using CBCT and micro-CT imaging technologies.

Keywords

CBCT Dental anatomy Imaging technology Micro-CT Root canal X-ray 

References

  1. 1.
    Martins JN, Marques D, Mata A, Carames J. Clinical efficacy of electronic apex locators: systematic review. J Endod. 2014;40:759–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Bender IB. Factors influencing the radiographic appearance of bony lesions. J Endod. 1982;8:161–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Scarfe WC, Levin MD, Gane D, Farman AG. Use of cone beam computed tomography in endodontics. Int J Dent. 2009;2009:634567.PubMedCrossRefGoogle Scholar
  4. 4.
    Patel S. New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. Int Endod J. 2009;42:463–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Hatcher DC. Operational principles for cone-beam computed tomography. J Am Dent Assoc. 2010;141:3s–6s.PubMedCrossRefGoogle Scholar
  6. 6.
    AAE and AAOMR Joint Position Statement: use of cone beam computed tomography in Endodontics 2015 update. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:508–12.Google Scholar
  7. 7.
    Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics – a review. Int Endod J. 2015;48:3–15.CrossRefGoogle Scholar
  8. 8.
    Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:106–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40:265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Spin-Neto R, Wenzel A. Patient movement and motion artefacts in cone beam computed tomography of the dentomaxillofacial region: a systematic literature review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:425–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Spin-Neto R, Matzen LH, Schropp L, Gotfredsen E, Wenzel A. Factors affecting patient movement and re-exposure in cone beam computed tomography examination. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:572–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Spin-Neto R, Matzen LH, Schropp L, Liedke GS, Gotfredsen E, Wenzel A. Radiographic observers’ ability to recognize patient movement during cone beam CT. Dentomaxillofac Radiol. 2014;43:20130449.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nagarajappa AK, Dwivedi N, Tiwari R. Artifacts: the downturn of CBCT image. J Int Soc Prev Community Dent. 2015;5:440–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Harvey SC, Patel S. Cone beam computed tomography. In: Patel S, Harvey S, Shemesh H, Durack C, editors. Cone beam computed tomography in endodontics. United Kingdom: Quintessence Publishing; 2016.Google Scholar
  15. 15.
    Harvey SC, Patel S. Using CBCT: dose, risks and artefacts. In: Patel S, Harvey S, Shemesh H, Durack C, editors. Cone beam computed tomography in endodontics. United Kingdom: Quintessence Publishing; 2016.Google Scholar
  16. 16.
    Bürklein S, Heck R, Schäfer E. Evaluation of the root canal anatomy of maxillary and mandibular premolars in a selected German population using cone-beam computed tomographic data. J Endod. 2017;43:1448–52.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ramos Brito AC, Verner FS, Junqueira RB, Yamasaki MC, Queiroz PM, Freitas DQ, et al. Detection of fractured endodontic instruments in root canals: comparison between different digital radiography systems and cone-beam computed tomography. J Endod. 2017;43:544–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Versiani MA, Pécora JD, Sousa-Neto MD. Update in root canal anatomy of permanent teeth using microcomputed tomography. In: Basrani B, editor. Endodontic irrigation: chemical disinfection of the root canal system. Switzerland: Springer International Publishing AG; 2015. p. 15–44.CrossRefGoogle Scholar
  19. 19.
    Cho YD, Lee JE, Chung Y, Lee WC, Seol YJ, Lee YM, et al. Collaborative management of combined periodontal-endodontic lesions with a palatogingival groove: a case series. J Endod. 2017;43:332–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Blattner TC, George N, Lee CC, Kumar V, Yelton CD. Efficacy of cone-beam computed tomography as a modality to accurately identify the presence of second mesiobuccal canals in maxillary first and second molars: a pilot study. J Endod. 2010;36:867–70.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Domark JD, Hatton JF, Benison RP, Hildebolt CF. An ex vivo comparison of digital radiography and cone-beam and micro computed tomography in the detection of the number of canals in the mesiobuccal roots of maxillary molars. J Endod. 2013;39:901–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Michetti J, Maret D, Mallet JP, Diemer F. Validation of cone beam computed tomography as a tool to explore root canal anatomy. J Endod. 2010;36:1187–90.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sousa TO, Haiter-Neto F, Nascimento EHL, Peroni LV, Freitas DQ, Hassan B. Diagnostic accuracy of periapical radiography and cone-beam computed tomography in identifying root canal configuration of human premolars. J Endod. 2017;43:1176–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zhang D, Chen J, Lan G, Li M, An J, Wen X, et al. The root canal morphology in mandibular first premolars: a comparative evaluation of cone-beam computed tomography and micro-computed tomography. Clin Oral Investig. 2017;21:1007–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Maret D, Peters OA, Galibourg A, Dumoncel J, Esclassan R, Kahn JL, et al. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes. J Endod. 2014;40:1321–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sousa TO, Hassan B, Mirmohammadi H, Shemesh H, Haiter-Neto F. Feasibility of cone-beam computed tomography in detecting lateral canals before and after root canal treatment: an ex vivo study. J Endod. 2017;43:1014–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Pécora JD, Estrela C, Bueno MR, Porto OC, Alencar AH, Sousa-Neto MD, et al. Detection of root canal isthmuses in molars by map-reading dynamic using CBCT images. Braz Dent J. 2013;24:569–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Aktan AM, Yildirim C, Culha E, Demir E, Ertugrul Ciftci M. Detection of second mesiobuccal canals in maxillary first molars using a new angle of cone beam computed tomography. Iran J Radiol. 2016;13:e31155.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Altunsoy M, Ok E, Nur BG, Aglarci OS, Gungor E, Colak M. Root canal morphology analysis of maxillary permanent first and second molars in a southeastern Turkish population using cone-beam computed tomography. J Dent Sci. 2015;10:401–7.CrossRefGoogle Scholar
  30. 30.
    Betancourt P, Navarro P, Munoz G, Fuentes R. Prevalence and location of the secondary mesiobuccal canal in 1,100 maxillary molars using cone beam computed tomography. BMC Med Imaging. 2016;16:66–73.Google Scholar
  31. 31.
    Falcao CA, Albuquerque VC, Amorim NL, Freitas SA, Santos TC, Matos FT, et al. Frequency of the mesiopalatal canal in upper first permanent molars viewed through computed tomography. Acta Odontol Latinoam. 2016;29:54–9.PubMedGoogle Scholar
  32. 32.
    Ghobashy AM, Nagy MM, Bayoumi AA. Evaluation of root and canal morphology of maxillary permanent molars in an Egyptian population by cone-beam computed tomography. J Endod. 2017;43:1089–92.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Guo J, Vahidnia A, Sedghizadeh P, Enciso R. Evaluation of root and canal morphology of maxillary permanent first molars in a North American population by cone-beam computed tomography. J Endod. 2014;40:635–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jing YN, Ye X, Liu DG, Zhang ZY, Ma XC. Cone-beam computed tomography was used for study of root and canal morphology of maxillary first and second molars. Beijing Da Xue Xue Bao. 2014;46:958–62.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim Y, Lee SJ, Woo J. Morphology of maxillary first and second molars analyzed by cone-beam computed tomography in a korean population: variations in the number of roots and canals and the incidence of fusion. J Endod. 2012;38:1063–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JH, Kim KD, Lee JK, Park W, Jeong JS, Lee Y, et al. Mesiobuccal root canal anatomy of Korean maxillary first and second molars by cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:785–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Martins JNR, Marques D, Francisco H, Carames J. Gender influence on the number of roots and root canal system configuration in human permanent teeth of a Portuguese subpopulation. Quintessence Int. 2018;2:103–11.Google Scholar
  38. 38.
    Naseri M, Safi Y, Akbarzadeh Baghban A, Khayat A, Eftekhar L. Survey of anatomy and root canal morphology of maxillary first molars regarding age and gender in an Iranian population using cone-beam computed tomography. Iran Endod J. 2016;11:298–303.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ratanajirasut R, Panichuttra A, Panmekiate S. A cone-beam computed tomographic study of root and canal morphology of maxillary first and second permanent molars in a Thai population. J Endod. 2018;44:56–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Reis AG, Grazziotin-Soares R, Barletta FB, Fontanella VR, Mahl CR. Second canal in mesiobuccal root of maxillary molars is correlated with root third and patient age: a cone-beam computed tomographic study. J Endod. 2013;39:588–92.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zhang Y, Xu H, Wang D, Gu Y, Wang J, Tu S, et al. Assessment of the second mesiobuccal root canal in maxillary first molars: a cone-beam computed tomographic study. J Endod. 2017;43:1990–6.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Zheng QH, Wang Y, Zhou XD, Wang Q, Zheng GN, Huang DM. A cone-beam computed tomography study of maxillary first permanent molar root and canal morphology in a Chinese population. J Endod. 2010;36:1480–4.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Betancourt P, Navarro P, Cantin M, Fuentes R. Cone-beam computed tomography study of prevalence and location of MB2 canal in the mesiobuccal root of the maxillary second molar. Int J Clin Exp Med. 2015;8:9128–34.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Wu D, Zhang G, Liang R, Zhou G, Wu Y, Sun C, et al. Root and canal morphology of maxillary second molars by cone-beam computed tomography in a native Chinese population. J Int Med Res. 2017;45:830–42.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Beshkenadze E, Chipashvili N. Anatomo-morphological features of the root canal system in Georgian population – cone-beam computed tomography study. Georgian Med News. 2015;247:7–14.Google Scholar
  46. 46.
    Estrela C, Bueno MR, Couto GS, Rabelo LE, Alencar AH, Silva RG, et al. Study of root canal anatomy in human permanent teeth in a subpopulation of Brazil's center region using cone-beam computed tomography – Part 1. Braz Dent J. 2015;26:530–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Martins JNR, Marques D, Mata A, Carames J. Root and root canal morphology of the permanent dentition in a Caucasian population: a cone-beam computed tomography study. Int Endod J. 2017;50:1013–26.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Çapar ID, Ertas H, Arslan H, Tarim Ertas E. A retrospective comparative study of cone-beam computed tomography versus rendered panoramic images in identifying the presence, types, and characteristics of dens invaginatus in a Turkish population. J Endod. 2015;41:473–8.PubMedCrossRefGoogle Scholar
  49. 49.
    da Silva EJ, de Castro RW, Nejaim Y, Silva AI, Haiter-Neto F, Silberman A, et al. Evaluation of root canal configuration of maxillary and mandibular anterior teeth using cone beam computed tomography: an in-vivo study. Quintessence Int. 2016;47:19–24.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Somalinga Amardeep N, Raghu S, Natanasabapathy V. Root canal morphology of permanent maxillary and mandibular canines in Indian population using cone beam computed tomography. Anat Res Int. 2014;2014:731859.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Han T, Ma Y, Yang L, Chen X, Zhang X, Wang Y. A study of the root canal morphology of mandibular anterior teeth using cone-beam computed tomography in a Chinese subpopulation. J Endod. 2014;40:1309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lin Z, Hu Q, Wang T, Ge J, Liu S, Zhu M, et al. Use of CBCT to investigate the root canal morphology of mandibular incisors. Surg Radiol Anat. 2014;36:877–82.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Liu J, Luo J, Dou L, Yang D. CBCT study of root and canal morphology of permanent mandibular incisors in a Chinese population. Acta Odontol Scand. 2014;72:26–30.CrossRefGoogle Scholar
  54. 54.
    Zhao Y, Dong YT, Wang XY, Wang ZH, Li G, Liu MQ, et al. Cone-beam computed tomography analysis of root canal configuration of 4 674 mandibular anterior teeth. Beijing Da Xue Xue Bao. 2014;46:95–9.Google Scholar
  55. 55.
    Zhengyan Y, Keke L, Fei W, Yueheng L, Zhi Z. Cone-beam computed tomography study of the root and canal morphology of mandibular permanent anterior teeth in a Chongqing population. Ther Clin Risk Manag. 2016;12:19–25.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Arslan H, Ertas H, Ertas ET, Kalabalık F, Saygılı G, Çapar ID. Evaluating root canal configuration of mandibular incisors with cone-beam computed tomography in a Turkish population. J Dent Sci. 2015;10:359–64.CrossRefGoogle Scholar
  57. 57.
    Shemesh A, Levin A, Katzenell V, Itzhak JB, Avraham Z, Levinson O, et al. Root anatomy and root canal morphology of mandibular canines in Israeli population. Refuat Hapeh Vehashinayim. 2016;33:19–23. 60Google Scholar
  58. 58.
    Soleymani A, Namaryan N, Moudi E, Gholinia A. Root canal morphology of mandibular canine in an Iranian population: a CBCT assessment. Iran Endod J. 2017;12:78–82.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Altunsoy M, Ok E, Nur BG, Aglarci OS, Gungor E, Colak M. A cone-beam computed tomography study of the root canal morphology of anterior teeth in a Turkish population. Eur J Dent. 2014;8:302–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jain P, Balasubramanian S, Sundaramurthy J, Natanasabapathy V. A cone beam computed tomography of the root canal morphology of maxillary anterior teeth in an institutional-based study in Chennai urban population: an in vitro study. J Int Soc Prev Community Dent. 2017;7:S68–74.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Monsarrat P, Arcaute B, Peters OA, Maury E, Telmon N, Georgelin-Gurgel M, et al. Interrelationships in the variability of root canal anatomy among the permanent teeth: a full-mouth approach by cone-beam CT. PLoS One. 2016;11:e0165329.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Torres HM, Arruda JJ, Silva-Filho JMD, Faria DLB, Nascimento MCC, Torres EM. Maxillary canine morphology: comparative and descriptive analysis from periapical radiographs and cone beam computed tomography. Gen Dent. 2017;65:37–41.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Aminsobhani M, Sadegh M, Meraji N, Razmi H, Kharazifard MJ. Evaluation of the root and canal morphology of mandibular permanent anterior teeth in an Iranian population by cone-beam computed tomography. J Dent (Tehran). 2013;10:358–66.Google Scholar
  64. 64.
    Kamtane S, Ghodke M. Morphology of mandibular incisors: a study on CBCT. Pol J Radiol. 2016;81:15–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kayaoglu G, Peker I, Gumusok M, Sarikir C, Kayadugun A, Ucok O. Root and canal symmetry in the mandibular anterior teeth of patients attending a dental clinic: CBCT study. Braz Oral Res. 2015;29:1–7.CrossRefGoogle Scholar
  66. 66.
    Shemesh A, Kavalerchik E, Levin A, Ben Itzhak J, Levinson O, Lvovsky A, et al. Root canal morphology evaluation of central and lateral mandibular incisors using cone-beam computed tomography in an Israeli population. J Endod. 2018;44:51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Verma GR, Bhadage C, Bhoosreddy AR, Vedpathak PR, Mehrotra GP, Nerkar AC, et al. Cone beam computed tomography study of root canal morphology of permanent mandibular incisors in Indian subpopulation. Pol J Radiol. 2017;82:371–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tian YY, Guo B, Zhang R, Yu X, Wang H, Hu T, et al. Root and canal morphology of maxillary first premolars in a Chinese subpopulation evaluated using cone-beam computed tomography. Int Endod J. 2012;45:996–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bulut DG, Kose E, Ozcan G, Sekerci AE, Canger EM, Sisman Y. Evaluation of root morphology and root canal configuration of premolars in the Turkish individuals using cone beam computed tomography. Eur J Dent. 2015;9:551–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Huang YD, Wu J, Sheu RJ, Chen MH, Chien DL, Huang YT, et al. Evaluation of the root and root canal systems of mandibular first premolars in northern Taiwanese patients using cone-beam computed tomography. J Formos Med Assoc. 2015;114:1129–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Park JB, Kim N, Park S, Kim Y, Ko Y. Evaluation of root anatomy of permanent mandibular premolars and molars in a Korean population with cone-beam computed tomography. Eur J Dent. 2013;7:94–101.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Felsypremila G, Vinothkumar TS, Kandaswamy D. Anatomic symmetry of root and root canal morphology of posterior teeth in Indian subpopulation using cone beam computed tomography: a retrospective study. Eur J Dent. 2015;9:500–7.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Martins JNR, Francisco H, Ordinola-Zapata R. Prevalence of C-shaped configurations in the mandibular first and second premolars: a cone-beam computed tomographic in vivo study. J Endod. 2017;43:890–5.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Abella F, Teixido LM, Patel S, Sosa F, Duran-Sindreu F, Roig M. Cone-beam computed tomography analysis of the root canal morphology of maxillary first and second premolars in a spanish population. J Endod. 2015;41:1241–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ok E, Altunsoy M, Nur BG, Aglarci OS, Colak M, Gungor E. A cone-beam computed tomography study of root canal morphology of maxillary and mandibular premolars in a Turkish population. Acta Odontol Scand. 2014;72:701–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Yang L, Chen X, Tian C, Han T, Wang Y. Use of cone-beam computed tomography to evaluate root canal morphology and locate root canal orifices of maxillary second premolars in a Chinese subpopulation. J Endod. 2014;40:630–4.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Arslan H, Çapar ID, Ertas ET, Ertas H, Akcay M. A cone-beam computed tomographic study of root canal systems in mandibular premolars in a Turkish population: theoretical model for determining orifice shape. Eur J Dent. 2015;9:11–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Khademi A, Mehdizadeh M, Sanei M, Sadeqnejad H, Khazaei S. Comparative evaluation of root canal morphology of mandibular premolars using clearing and cone beam computed tomography. Dent Res J (Isfahan). 2017;14:321–5.CrossRefGoogle Scholar
  79. 79.
    Kazemipoor M, Hajighasemi A, Hakimian R. Gender difference and root canal morphology in mandibular premolars: a cone-beam computed tomography study in an Iranian population. Contemp Clin Dent. 2015;6:401–4.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kazemipoor M, Poorkheradmand M, Rezaeian M, Safi Y. Evaluation by CBCT of root and canal morphology in mandibular premolars in an Iranian population. Chin J Dent Res. 2015;18:191–6.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Liao Q, Han JL, Xu X. Analysis of canal morphology of mandibular first premolar. Shanghai Kou Qiang Yi Xue. 2011;20:517–21.PubMedGoogle Scholar
  82. 82.
    Llena C, Fernandez J, Ortolani PS, Forner L. Cone-beam computed tomography analysis of root and canal morphology of mandibular premolars in a Spanish population. Imaging Sci Dent. 2014;44:221–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Salarpour M, Farhad Mollashahi N, Mousavi E, Salarpour E. Evaluation of the effect of tooth type and canal configuration on crown size in mandibular premolars by cone-beam computed tomography. Iran Endod J. 2013;8:153–6.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Shetty A, Hegde MN, Tahiliani D, Shetty H, Bhat GT, Shetty S. A three-dimensional study of variations in root canal morphology using cone-beam computed tomography of mandibular premolars in a South Indian population. J Clin Diagn Res. 2014;8:22–4.Google Scholar
  85. 85.
    Yang H, Tian C, Li G, Yang L, Han X, Wang Y. A cone-beam computed tomography study of the root canal morphology of mandibular first premolars and the location of root canal orifices and apical foramina in a Chinese subpopulation. J Endod. 2013;39:435–8.CrossRefGoogle Scholar
  86. 86.
    Yu X, Guo B, Li KZ, Zhang R, Tian YY, Wang H, et al. Cone-beam computed tomography study of root and canal morphology of mandibular premolars in a western Chinese population. BMC Med Imaging. 2012;12:18–22.Google Scholar
  87. 87.
    Martins JN, Mata A, Marques D, Carames J. Prevalence of root fusions and main root canal merging in human upper and lower molars: a cone-beam computed tomography in vivo study. J Endod. 2016;42:900–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Jo HH, Min JB, Hwang HK. Analysis of C-shaped root canal configuration in maxillary molars in a Korean population using cone-beam computed tomography. Restor Dent Endod. 2016;41:55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Martins JN, Mata A, Marques D, Anderson C, Carames J. Prevalence and characteristics of the maxillary C-shaped molar. J Endod. 2016;42:383–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Silva EJ, Nejaim Y, Silva AI, Haiter-Neto F, Zaia AA, Cohenca N. Evaluation of root canal configuration of maxillary molars in a Brazilian population using cone-beam computed tomographic imaging: an in vivo study. J Endod. 2014;40:173–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tian XM, Yang XW, Qian L, Wei B, Gong Y. Analysis of the root and canal morphologies in maxillary first and second molars in a Chinese population using cone-beam computed tomography. J Endod. 2016;42:696–701.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Khademi A, Zamani Naser A, Bahreinian Z, Mehdizadeh M, Najarian M, Khazaei S. Root morphology and canal configuration of first and second maxillary molars in a selected Iranian population: a cone-beam computed tomography evaluation. Iran Endod J. 2017;12:288–92.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Li L, Zhan FL, Jin YW. Preliminary study on root canal morphology of maxillary second molars. Shanghai Kou Qiang Yi Xue. 2014;23:179–83.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Abuabara A, Baratto-Filho F, Aguiar Anele J, Leonardi DP, Sousa-Neto MD. Efficacy of clinical and radiological methods to identify second mesiobuccal canals in maxillary first molars. Acta Odontol Scand. 2013;71:205–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Alrahabi M, Sohail Zafar M. Evaluation of root canal morphology of maxillary molars using cone beam computed tomography. Pak J Med Sci. 2015;31:426–30.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Baratto Filho F, Zaitter S, Haragushiku GA, de Campos EA, Abuabara A, Correr GM. Analysis of the internal anatomy of maxillary first molars by using different methods. J Endod. 2009;35:337–42.PubMedCrossRefGoogle Scholar
  97. 97.
    Ghoncheh Z, Zade BM, Kharazifard MJ. Root morphology of the maxillary first and second molars in an Iranian population using cone beam computed tomography. J Dent (Tehran). 2017;14:115–22.Google Scholar
  98. 98.
    Gu Y, Wang W, Ni L. Four-rooted permanent maxillary first and second molars in a northwestern Chinese population. Arch Oral Biol. 2015;60:811–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Hiebert BM, Abramovitch K, Rice D, Torabinejad M. Prevalence of second mesiobuccal canals in maxillary first molars detected using cone-beam computed tomography, direct occlusal access, and coronal plane grinding. J Endod. 2017;43:1711–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Lyra CM, Delai D, Pereira KC, Pereira GM, Pasternak Junior B, Oliveira CA. Morphology of mesiobuccal root canals of maxillary first molars: a comparison of CBCT scanning and cross-sectioning. Braz Dent J. 2015;26:525–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Neelakantan P, Subbarao C, Ahuja R, Subbarao CV, Gutmann JL. Cone-beam computed tomography study of root and canal morphology of maxillary first and second molars in an Indian population. J Endod. 2010;36:1622–7.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Nikoloudaki GE, Kontogiannis TG, Kerezoudis NP. Evaluation of the root and canal morphology of maxillary permanent molars and the incidence of the second mesiobuccal root canal in Greek population using cone-beam computed tomography. Open Dent J. 2015;9:267–72.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Perez-Heredia M, Ferrer-Luque CM, Bravo M, Castelo-Baz P, Ruiz-Pinon M, Baca P. Cone-beam computed tomographic study of root anatomy and canal configuration of molars in a Spanish population. J Endod. 2017;43:1511–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Plotino G, Tocci L, Grande NM, Testarelli L, Messineo D, Ciotti M, et al. Symmetry of root and root canal morphology of maxillary and mandibular molars in a white population: a cone-beam computed tomography study in vivo. J Endod. 2013;39:1545–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rouhani A, Bagherpour A, Akbari M, Azizi M, Nejat A, Naghavi N. Cone-beam computed tomography evaluation of maxillary first and second molars in Iranian population: a morphological study. Iran Endod J. 2014;9:190–4.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Shenoi RP, Ghule HM. CBVT analysis of canal configuration of the mesio-buccal root of maxillary first permanent molar teeth: an in vitro study. Contemp Clin Dent. 2012;3:277–81.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhang R, Yang H, Yu X, Wang H, Hu T, Dummer PM. Use of CBCT to identify the morphology of maxillary permanent molar teeth in a Chinese subpopulation. Int Endod J. 2011;44:162–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kim SY, Kim BS, Woo J, Kim Y. Morphology of mandibular first molars analyzed by cone-beam computed tomography in a Korean population: variations in the number of roots and canals. J Endod. 2013;39:1516–21.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wang Y, Zheng QH, Zhou XD, Tang L, Wang Q, Zheng GN, et al. Evaluation of the root and canal morphology of mandibular first permanent molars in a western Chinese population by cone-beam computed tomography. J Endod. 2010;36:1786–9.CrossRefGoogle Scholar
  110. 110.
    Zhang R, Wang H, Tian YY, Yu X, Hu T, Dummer PM. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular molars in Chinese individuals. Int Endod J. 2011;44:990–9.CrossRefGoogle Scholar
  111. 111.
    Zhang X, Xiong S, Ma Y, Han T, Chen X, Wan F, et al. A cone-beam computed tomographic study on mandibular first molars in a Chinese subpopulation. PLoS One. 2015;10:e0134919.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Huang CC, Chang YC, Chuang MC, Lai TM, Lai JY, Lee BS, et al. Evaluation of root and canal systems of mandibular first molars in Taiwanese individuals using cone-beam computed tomography. J Formos Med Assoc. 2010;109:303–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Tu MG, Huang HL, Hsue SS, Hsu JT, Chen SY, Jou MJ, et al. Detection of permanent three-rooted mandibular first molars by cone-beam computed tomography imaging in taiwanese individuals. J Endod. 2009;35:503–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Silva EJ, Nejaim Y, Silva AV, Haiter-Neto F, Cohenca N. Evaluation of root canal configuration of mandibular molars in a Brazilian population by using cone-beam computed tomography: an in vivo study. J Endod. 2013;39:849–52.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    von Zuben M, Martins JNR, Berti L, Cassim I, Flynn D, Gonzalez JA, et al. Worldwide prevalence of mandibular second molar c-shaped morphologies evaluated by cone-beam computed tomography. J Endod. 2017;43:1442–7.CrossRefGoogle Scholar
  116. 116.
    Torres A, Jacobs R, Lambrechts P, Brizuela C, Cabrera C, Concha G, et al. Characterization of mandibular molar root and canal morphology using cone beam computed tomography and its variability in Belgian and Chilean population samples. Imaging Sci Dent. 2015;45:95–101.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Nur BG, Ok E, Altunsoy M, Aglarci OS, Colak M, Gungor E. Evaluation of the root and canal morphology of mandibular permanent molars in a south-eastern Turkish population using cone-beam computed tomography. Eur J Dent. 2014;8:154–9.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Mukhaimer RH. Evaluation of root canal configuration of mandibular first molars in a Palestinian population by using cone-beam computed tomography: an ex vivo study. Int Sch Res Notices. 2014;2014:583621.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Akbarzadeh N, Aminoshariae A, Khalighinejad N, Palomo JM, Syed A, Kulild JC, et al. The association between the anatomic landmarks of the pulp chamber floor and the prevalence of middle mesial canals in mandibular first molars: an in vivo analysis. J Endod. 2017;43:1797–801.PubMedCrossRefGoogle Scholar
  120. 120.
    Caputo BV, Noro Filho GA, de Andrade Salgado DM, Moura-Netto C, Giovani EM, Costa C. Evaluation of the root canal morphology of molars by using cone-beam computed tomography in a Brazilian population: Part I. J Endod. 2016;42:1604–7.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Celikten B, Tufenkci P, Aksoy U, Kalender A, Kermeoglu F, Dabaj P, et al. Cone beam CT evaluation of mandibular molar root canal morphology in a Turkish Cypriot population. Clin Oral Investig. 2016;20:2221–6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Demirbuga S, Sekerci AE, Dincer AN, Cayabatmaz M, Zorba YO. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular first and second molars in Turkish individuals. Med Oral Patol Oral Cir Bucal. 2013;18:e737–44.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Madani ZS, Mehraban N, Moudi E, Bijani A. Root and canal morphology of mandibular molars in a selected Iranian population using cone-beam computed tomography. Iran Endod J. 2017;12:143–8.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Mokhtari H, Niknami M, Mokhtari Zonouzi HR, Sohrabi A, Ghasemi N, Akbari Golzar A. Accuracy of cone-beam computed tomography in determining the root canal morphology of mandibular first molars. Iran Endod J. 2016;11:101–5.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Rahimi S, Mokhtari H, Ranjkesh B, Johari M, Frough Reyhani M, Shahi S, et al. Prevalence of extra roots in permanent mandibular first molars in Iranian population: a CBCT analysis. Iran Endod J. 2017;12:70–3.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Shemesh A, Levin A, Katzenell V, Ben Itzhak J, Levinson O, Zini A, et al. Prevalence of 3- and 4-rooted first and second mandibular molars in the Israeli population. J Endod. 2015;41:338–42.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Kim Y, Roh BD, Shin Y, Kim BS, Choi YL, Ha A. Morphological characteristics and classification of mandibular first molars having 2 distal roots or canals: 3-dimensional biometric analysis using cone-beam computed tomography in a Korean population. J Endod. 2018;44:46–50.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Kim SY, Kim BS, Kim Y. Mandibular second molar root canal morphology and variants in a Korean subpopulation. Int Endod J. 2016;49:136–44.CrossRefGoogle Scholar
  129. 129.
    Pawar AM, Pawar M, Kfir A, Singh S, Salve P, Thakur B, et al. Root canal morphology and variations in mandibular second molar teeth of an Indian population: an in vivo cone-beam computed tomography analysis. Clin Oral Investig. 2017;21:2801–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ladeira DB, Cruz AD, Freitas DQ, Almeida SM. Prevalence of C-shaped root canal in a Brazilian subpopulation: a cone-beam computed tomography analysis. Braz Oral Res. 2014;28:39–45.PubMedCrossRefGoogle Scholar
  131. 131.
    Martins JN, Mata A, Marques D, Carames J. Prevalence of C-shaped mandibular molars in the Portuguese population evaluated by cone-beam computed tomography. Eur J Dent. 2016;10:529–35.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Shemesh A, Levin A, Katzenell V, Itzhak JB, Levinson O, Avraham Z, et al. C-shaped canals-prevalence and root canal configuration by cone beam computed tomography evaluation in first and second mandibular molars-a cross-sectional study. Clin Oral Investig. 2017;21:2039–44.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Zheng Q, Zhang L, Zhou X, Wang Q, Wang Y, Tang L, et al. C-shaped root canal system in mandibular second molars in a Chinese population evaluated by cone-beam computed tomography. Int Endod J. 2011;44:857–62.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang Q, Chen H, Fan B, Fan W, Gutmann JL. Root and root canal morphology in maxillary second molar with fused root from a native Chinese population. J Endod. 2014;40:871–5.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Helvacioglu-Yigit D, Sinanoglu A. Use of cone-beam computed tomography to evaluate C-shaped root canal systems in mandibular second molars in a Turkish subpopulation: a retrospective study. Int Endod J. 2013;46:1032–8.PubMedGoogle Scholar
  136. 136.
    Sinanoglu A, Helvacioglu-Yigit D. Analysis of C-shaped canals by panoramic radiography and cone-beam computed tomography: root-type specificity by longitudinal distribution. J Endod. 2014;40:917–21.PubMedCrossRefGoogle Scholar
  137. 137.
    Elliott JC, Dover SD. X-ray microtomography. J Microsc. 1982;126:211–3.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Stock SR. Microcomputed tomography: methodology and applications. Boca Raton: CRC Press; 2009.Google Scholar
  139. 139.
    Peters OA, Laib A, Ruegsegger P, Barbakow F. Three-dimensional analysis of root canal geometry by high-resolution computed tomography. J Dent Res. 2000;79:1405–9.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Versiani MA, Pécora JD, Sousa-Neto MD. The anatomy of two-rooted mandibular canines determined using micro-computed tomography. Int Endod J. 2011;44:682–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Versiani MA, Pécora JD, Sousa-Neto MD. Root and root canal morphology of four-rooted maxillary second molars: a micro-computed tomography study. J Endod. 2012;38:977–82.CrossRefGoogle Scholar
  142. 142.
    Versiani MA, Pécora JD, Sousa-Neto MD. Microcomputed tomography analysis of the root canal morphology of single-rooted mandibular canines. Int Endod J. 2013;46:800–7.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ketcham RA, Carlson WD. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci. 2001;27:381–400.CrossRefGoogle Scholar
  144. 144.
    Wang G, Vannier MW. Overview on micro-CT scanners for biomedical applications. Adv Imaging. 2001;16:22–7.Google Scholar
  145. 145.
    Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am. 1984;1:612–9.CrossRefGoogle Scholar
  146. 146.
    Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315–37.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Nielsen RB, Alyassin AM, Peters DD, Carnes DL, Lancaster J. Microcomputed tomography: an advanced system for detailed endodontic research. J Endod. 1995;21:561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Rhodes JS, Ford TR, Lynch JA, Liepins PJ, Curtis RV. Micro-computed tomography: a new tool for experimental endodontology. Int Endod J. 1999;32:165–70.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Dowker SE, Davis GR, Elliott JC. X-ray microtomography: nondestructive three-dimensional imaging for in vitro endodontic studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:510–6.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Bjørndal L, Carlsen O, Thuesen G, Darvann T, Kreiborg S. External and internal macromorphology in 3D-reconstructed maxillary molars using computerized X-ray microtomography. Int Endod J. 1999;32:3–9.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Green EN. Microscopic investigation of root canal diameters. J Am Dent Assoc. 1958;57:636–44.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Gilles J, Reader A. An SEM investigation of the mesiolingual canal in human maxillary first and second molars. Oral Surg Oral Med Oral Pathol. 1990;70:638–43.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Wu MK, R’Oris A, Barkis D, Wesselink PR. Prevalence and extent of long oval canals in the apical third. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:739–43.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Cheung GS, Yang J, Fan B. Morphometric study of the apical anatomy of C-shaped root canal systems in mandibular second molars. Int Endod J. 2007;40:239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Peters OA, Laib A, Gohring TN, Barbakow F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod. 2001;27:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Siqueira JF Jr, Alves FRF, Versiani MA, Rocas IN, Almeida BM, Neves MAS, et al. Correlative bacteriologic and micro-computed tomographic analysis of mandibular molar mesial canals prepared by Self-Adjusting File, Reciproc, and Twisted File systems. J Endod. 2013;39:1044–50.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Versiani MA, Steier L, De-Deus G, Tassani S, Pécora JD, Sousa-Neto MD. Micro-computed tomography study of oval-shaped canals prepared with the Self-adjusting File, Reciproc, WaveOne, and Protaper Universal systems. J Endod. 2013;39:1060–6.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Gu Y, Lee JK, Spangberg LS, Lee Y, Park CM, Seo DG, et al. Minimum-intensity projection for in-depth morphology study of mesiobuccal root. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:671–7.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Hosoya N, Yoshida T, Iino F, Arai T, Mishima A, Kobayashi K. Detection of a secondary mesio-buccal canal in maxillary first molar: a comparative study. J Conserv Dent. 2012;15:127–31.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Kim Y, Chang SW, Lee JK, Chen IP, Kaufman B, Jiang J, et al. A micro-computed tomography study of canal configuration of multiple-canalled mesiobuccal root of maxillary first molar. Clin Oral Investig. 2013;17:1541–6.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Lee JK, Ha BH, Choi JH, Heo SM, Perinpanayagam H. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography. J Endod. 2006;32:941–5.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Park JW, Lee JK, Ha BH, Choi JH, Perinpanayagam H. Three-dimensional analysis of maxillary first molar mesiobuccal root canal configuration and curvature using micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:437–42.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Somma F, Leoni D, Plotino G, Grande NM, Plasschaert A. Root canal morphology of the mesiobuccal root of maxillary first molars: a micro-computed tomographic analysis. Int Endod J. 2009;42:165–74.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Verma P, Love RM. A micro CT study of the mesiobuccal root canal morphology of the maxillary first molar tooth. Int Endod J. 2011;44:210–7.CrossRefGoogle Scholar
  165. 165.
    Yamada M, Ide Y, Matsunaga S, Kato H, Nakagawa K. Three-dimensional analysis of Mesiobuccal root canal of japanese maxillary first molar using Micro-CT. Bull Tokyo Dent Coll. 2011;52:77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Cleghorn BM, Christie WH, Dong CC. Anomalous mandibular premolars: a mandibular first premolar with three roots and a mandibular second premolar with a C-shaped canal system. Int Endod J. 2008;41:1005–14.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Marca C, Dummer PM, Bryant S, Vier-Pelisser FV, So MV, Fontanella V, et al. Three-rooted premolar analyzed by high-resolution and cone beam CT. Clin Oral Investig. 2013;17:1535–40.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Ordinola-Zapata R, Bramante CM, Villas-Boas MH, Cavenago BC, Duarte MH, Versiani MA. Morphologic micro-computed tomography analysis of mandibular premolars with three root canals. J Endod. 2013;39:1130–5.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Gu Y, Lu Q, Wang H, Ding Y, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars – Part I: Pulp floor and root canal system. J Endod. 2010;36:990–4.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Gu Y, Lu Q, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars: Part II—Measurement of root canal curvatures. J Endod. 2010;36:1341–6.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Gu Y, Zhou P, Ding Y, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars: Part III—An odontometric analysis. J Endod. 2011;37:485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Li X, Liu N, Ye L, Nie X, Zhou X, Wen X, et al. A micro-computed tomography study of the location and curvature of the lingual canal in the mandibular first premolar with two canals originating from a single canal. J Endod. 2012;38:309–12.PubMedCrossRefGoogle Scholar
  173. 173.
    Fan B, Yang J, Gutmann JL, Fan M. Root canal systems in mandibular first premolars with C-shaped root configurations. Part I: Microcomputed tomography mapping of the radicular groove and associated root canal cross-sections. J Endod. 2008;34:1337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Fan B, Ye W, Xie E, Wu H, Gutmann JL. Three-dimensional morphological analysis of C-shaped canals in mandibular first premolars in a Chinese population. Int Endod J. 2012;45:1035–41.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Gu YC, Zhang YP, Liao ZG, Fei XD. A micro-computed tomographic analysis of wall thickness of C-shaped canals in mandibular first premolars. J Endod. 2013;39:973–6.PubMedCrossRefGoogle Scholar
  176. 176.
    Fan B, Cheung GS, Fan M, Gutmann JL, Bian Z. C-shaped canal system in mandibular second molars: Part I—Anatomical features. J Endod. 2004;30:899–903.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Fan B, Cheung GS, Fan M, Gutmann JL, Fan W. C-shaped canal system in mandibular second molars: Part II—Radiographic features. J Endod. 2004;30:904–8.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Fan B, Min Y, Lu G, Yang J, Cheung GS, Gutmann JL. Negotiation of C-shaped canal systems in mandibular second molars. J Endod. 2009;35:1003–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Fan W, Fan B, Gutmann JL, Cheung GS. Identification of C-shaped canal in mandibular second molars. Part I: Radiographic and anatomical features revealed by intraradicular contrast medium. J Endod. 2007;33:806–10.PubMedCrossRefGoogle Scholar
  180. 180.
    Fan W, Fan B, Gutmann JL, Fan M. Identification of a C-shaped canal system in mandibular second molars. Part III. Anatomic features revealed by digital subtraction radiography. J Endod. 2008;34:1187–90.PubMedCrossRefGoogle Scholar
  181. 181.
    Gao Y, Fan B, Cheung GS, Gutmann JL, Fan M. C-shaped canal system in mandibular second molars. Part IV: 3-D morphological analysis and transverse measurement. J Endod. 2006;32:1062–5.PubMedCrossRefGoogle Scholar
  182. 182.
    Min Y, Fan B, Cheung GS, Gutmann JL, Fan M. C-shaped canal system in mandibular second molars. Part III: The morphology of the pulp chamber floor. J Endod. 2006;32:1155–9.PubMedCrossRefGoogle Scholar
  183. 183.
    Gu YC. A micro-computed tomographic analysis of maxillary lateral incisors with radicular grooves. J Endod. 2011;37:789–92.PubMedCrossRefGoogle Scholar
  184. 184.
    Gu Y, Zhang Y, Liao Z. Root and canal morphology of mandibular first premolars with radicular grooves. Arch Oral Biol. 2013;58:1609–17.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Li J, Li L, Pan Y. Anatomic study of the buccal root with furcation groove and associated root canal shape in maxillary first premolars by using micro-computed tomography. J Endod. 2013;39:265–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Fan B, Pan Y, Gao Y, Fang F, Wu Q, Gutmann JL. Three-dimensional morphologic analysis of isthmuses in the mesial roots of mandibular molars. J Endod. 2010;36:1866–9.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Gu L, Wei X, Ling J, Huang X. A microcomputed tomographic study of canal isthmuses in the mesial root of mandibular first molars in a Chinese population. J Endod. 2009;35:353–6.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Harris SP, Bowles WR, Fok A, McClanahan SB. An anatomic investigation of the mandibular first molar using micro-computed tomography. J Endod. 2013;39:1374–8.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Mannocci F, Peru M, Sherriff M, Cook R, Pitt Ford TR. The isthmuses of the mesial root of mandibular molars: a micro-computed tomographic study. Int Endod J. 2005;38:558–63.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Villas-Boas MH, Bernardineli N, Cavenago BC, Marciano M, Del Carpio-Perochena A, de Moraes IG, et al. Micro-computed tomography study of the internal anatomy of mesial root canals of mandibular molars. J Endod. 2011;37:1682–6.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Leoni GB, Versiani MA, Pécora JD, Sousa-Neto MD. Micro-computed tomographic analysis of the root canal morphology of mandibular incisors. J Endod. 2014;40:710–6.CrossRefGoogle Scholar
  192. 192.
    Almeida MM, Bernardineli N, Ordinola-Zapata R, Villas-Boas MH, Amoroso-Silva PA, Brandão CG, et al. Micro-computed tomography analysis of the root canal anatomy and prevalence of oval canals in mandibular incisors. J Endod. 2013;39:1529–33.CrossRefGoogle Scholar
  193. 193.
    Liu N, Li X, Ye L, An J, Nie X, Liu L, et al. A micro-computed tomography study of the root canal morphology of the mandibular first premolar in a population from southwestern China. Clin Oral Investig. 2013;17:999–1007.PubMedCrossRefGoogle Scholar
  194. 194.
    Meder-Cowherd L, Williamson AE, Johnson WT, Vasilescu D, Walton R, Qian F. Apical morphology of the palatal roots of maxillary molars by using micro-computed tomography. J Endod. 2011;37:1162–5.PubMedCrossRefGoogle Scholar
  195. 195.
    Elnour M, Khabeer A, AlShwaimi E. Evaluation of root canal morphology of maxillary second premolars in a Saudi Arabian sub-population: an in vitro microcomputed tomography study. Saudi Dent J. 2016;28:162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Hartmann RC, Baldasso FE, Sturmer CP, Acauan MD, Scarparo RK, Morgental RD, et al. Clinically relevant dimensions of 3-rooted maxillary premolars obtained via high-resolution computed tomography. J Endod. 2013;39:1639–45.PubMedCrossRefGoogle Scholar
  197. 197.
    Johnsen GF, Sundnes J, Wengenroth J, Haugen HJ. Methodology for morphometric analysis of modern human contralateral premolars. J Comput Assist Tomogr. 2016;40:617–25.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Alkaabi W, AlShwaimi E, Farooq I, Goodis HE, Chogle SM. A micro-computed tomography study of the root canal morphology of mandibular first premolars in an Emirati population. Med Princ Pract. 2017;26:118–24.PubMedCrossRefGoogle Scholar
  199. 199.
    Chen J, Li X, Su Y, Zhang D, Wen X, Nie X, et al. A micro-computed tomography study of the relationship between radicular grooves and root canal morphology in mandibular first premolars. Clin Oral Investig. 2014;19:329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Dou L, Li D, Xu T, Tang Y, Yang D. Root anatomy and canal morphology of mandibular first premolars in a Chinese population. Sci Rep. 2017;7:750–6.Google Scholar
  201. 201.
    Ordinola-Zapata R, Monteiro Bramante C, Gagliardi Minotti P, Cavalini Cavenago B, Gutmann JL, Moldauer BI, et al. Micro-CT evaluation of C-shaped mandibular first premolars in a Brazilian subpopulation. Int Endod J. 2015;48:807–13.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Briseño-Marroquin B, Paqué F, Maier K, Willershausen B, Wolf TG. Root canal morphology and configuration of 179 maxillary first molars by means of micro-computed tomography: an ex vivo study. J Endod. 2015;41:2008–13.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    ElAyouti A, Hulber JM, Judenhofer MS, Connert T, Mannheim JG, Lost C, et al. Apical constriction: location and dimensions in molars-a micro-computed tomography study. J Endod. 2014;40:1095–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Lee KW, Kim Y, Perinpanayagam H, Lee JK, Yoo YJ, Lim SM, et al. Comparison of alternative image reformatting techniques in micro-computed tomography and tooth clearing for detailed canal morphology. J Endod. 2014;40:417–22.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Marceliano-Alves M, Alves FR, Mendes Dde M, Provenzano JC. Micro-computed tomography analysis of the root canal morphology of palatal roots of maxillary first molars. J Endod. 2016;42:280–3.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Ordinola-Zapata R, Martins JN, Bramante CM, Villas-Boas MH, Duarte MH, Versiani MA. Morphological evaluation of maxillary second molars with fused roots: a micro-CT study. Int Endod J. 2017;50:1192–200.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Tomaszewska IM, Leszczynski B, Wrobel A, Gladysz T, Duncan HF. A micro-computed tomographic (micro-CT) analysis of the root canal morphology of maxillary third molar teeth. Ann Anat. 2018;215:83–92.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Amoroso-Silva PA, Ordinola-Zapata R, Duarte MA, Gutmann JL, del Carpio-Perochena A, Bramante CM, et al. Micro-computed tomographic analysis of mandibular second molars with C-shaped root canals. J Endod. 2015;41:890–5.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Barsness SA, Bowles WR, Fok A, McClanahan SB, Harris SP. An anatomical investigation of the mandibular second molar using micro-computed tomography. Surg Radiol Anat. 2015;37:267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Filpo-Perez C, Bramante CM, Villas-Boas MH, Hungaro Duarte MA, Versiani MA, Ordinola-Zapata R. Micro-computed tomographic analysis of the root canal morphology of the distal root of mandibular first molar. J Endod. 2015;41:231–6.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Keleş A, Keskin C. A micro-computed tomographic study of band-shaped root canal isthmuses, having their floor in the apical third of mesial roots of mandibular first molars. Int Endod J. 2018:2:240–6.PubMedCrossRefGoogle Scholar
  212. 212.
    Keleş A, Keskin C. Apical root canal morphology of mesial roots of mandibular first molar teeth with Vertucci Type II configuration by means of micro-computed tomography. J Endod. 2017;43:481–5.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Keleş A, Keskin C. Detectability of middle mesial root canal orifices by troughing technique in mandibular molars: a micro-computed tomographic study. J Endod. 2017;43:1329–31.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Kim Y, Perinpanayagam H, Lee JK, Yoo YJ, Oh S, Gu Y, et al. Comparison of mandibular first molar mesial root canal morphology using micro-computed tomography and clearing technique. Acta Odontol Scand. 2015;73:427–32.PubMedCrossRefGoogle Scholar
  215. 215.
    Lamia AF, McDonald NJ. Microcomputed tomographic evaluation of mandibular molars with single distal canals. Gen Dent. 2015;63:33–7.PubMedGoogle Scholar
  216. 216.
    Lee JK, Yoo YJ, Perinpanayagam H, Ha BH, Lim SM, Oh SR, et al. Three-dimensional modelling and concurrent measurements of root anatomy in mandibular first molar mesial roots using micro-computed tomography. Int Endod J. 2015;48:380–9.PubMedCrossRefGoogle Scholar
  217. 217.
    Min Y, Ma JZ, Shen Y, Cheung GS, Gao Y. A micro-computed tomography study of the negotiation and anatomical feature in apical root canal of mandibular molars. Scanning. 2016;38:819–24.PubMedCrossRefGoogle Scholar
  218. 218.
    Ordinola-Zapata R, Bramante CM, Versiani MA, Moldauer BI, Topham G, Gutmann JL, et al. Comparative accuracy of the Clearing Technique, CBCT and Micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J. 2017;50:90–6.PubMedCrossRefGoogle Scholar
  219. 219.
    Rodrigues CT, Oliveira-Santos C, Bernardineli N, Duarte MA, Bramante CM, Minotti-Bonfante PG, et al. Prevalence and morphometric analysis of three-rooted mandibular first molars in a Brazilian subpopulation. J Appl Oral Sci. 2016;24:535–42.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Souza-Flamini LE, Leoni GB, Chaves JF, Versiani MA, Cruz-Filho AM, Pecora JD, et al. The radix entomolaris and paramolaris: a micro-computed tomographic study of 3-rooted mandibular first molars. J Endod. 2014;40:1616–21.PubMedCrossRefGoogle Scholar
  221. 221.
    Versiani MA, Ordinola-Zapata R, Keleş A, Alcin H, Bramante CM, Pécora JD, et al. Middle mesial canals in mandibular first molars: a micro-CT study in different populations. Arch Oral Biol. 2016;61:130–7.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Wolf TG, Paqué F, Zeller M, Willershausen B, Briseño-Marroquin B. Root canal morphology and configuration of 118 mandibular first molars by means of micro-computed tomography: an ex vivo study. J Endod. 2016;42:610–4.PubMedCrossRefGoogle Scholar
  223. 223.
    Johnstone M, Parashos P. Endodontics and the ageing patient. Aust Dent J. 2015;60 Suppl 1:20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Gani OA, Boiero CF, Correa C, Masin I, Machado R, Silva EJ, et al. Morphological changes related to age in mesial root canals of permanent mandibular first molars. Acta Odontol Latinoam. 2014;27:105–9.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Thomas RP, Moule AJ, Bryant R. Root canal morphology of maxillary permanent first molar teeth at various ages. Int Endod J. 1993;26:257–67.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Peiris HR, Pitakotuwage TN, Takahashi M, Sasaki K, Kanazawa E. Root canal morphology of mandibular permanent molars at different ages. Int Endod J. 2008;41:828–35.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Nosrat A, Deschenes RJ, Tordik PA, Hicks ML, Fouad AF. Middle mesial canals in mandibular molars: incidence and related factors. J Endod. 2015;41:28–32.PubMedCrossRefGoogle Scholar
  228. 228.
    Neaverth EJ, Kotler LM, Kaltenbach RF. Clinical investigation (in vivo) of endodontically treated maxillary first molars. J Endod. 1987;13:506–12.PubMedCrossRefGoogle Scholar
  229. 229.
    Martins J, Ordinola-Zapata R, Marques D, Francisco H, Caramês J. Differences in root canal system configuration in human permanent teeth at different age groups. Int Endod J. 2018.  https://doi.org/10.1111/iej.12896.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dental School of LisbonUniversity of LisbonLisbonPortugal
  2. 2.Department of Restorative Dentistry, Dental School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations