Dentin Basic Structure, Composition, and Function

  • Leo Tjäderhane


Dentin is the largest structural component of the human tooth. Dentin provides support to enamel, preventing enamel fractures during occlusal loading. It also protects the pulp from microbial and other potentially harmful stimuli. As vital tissue, dentin is not only a passive mechanical barrier between the oral environment and the pulp tissue but, in many ways, participates in the overall protection of the continuum of the hard and soft tissue often referred as the dentin-pulp complex. For example, dentin contains several growth factors that may be liberated during wear or caries and participate in the regulation of the defensive reaction at the dentin-pulp border or the pulp proper. Odontoblasts project their cell processes into dentinal tubules, and also therefore the division of the “vital” pulp and “dead” mineralized dentin is artificial. Different parts of the dentin in a particular tooth may also qualitatively differ from each other, which enables it to meet the requirements of that specific location.


Dentinogenesis Odontoblast Mineralization Organic matrix Predentin 


  1. 1.
    Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH. Dentin basic structure and composition – an overview. Endod Topics. 2012;20:3–29.CrossRefGoogle Scholar
  2. 2.
    Mitsiadis TA, Graf D. Cell fate determination during tooth development and regeneration. Birth Defects Res C Embryo Today. 2009;87:199–211.CrossRefGoogle Scholar
  3. 3.
    Tjäderhane L, Koivumäki S, Pääkkönen V, Ilvesaro J, Soini Y, Salo T, Metsikkö K, Tuukkanen J. Polarity of mature human odontoblasts. J Dent Res. 2013;92:1011–6.CrossRefGoogle Scholar
  4. 4.
    Tjäderhane L, Haapasalo M. Dentin-pulp border: dynamic interface between hard and soft tissues. Endod Topics. 2012;20:52–84.CrossRefGoogle Scholar
  5. 5.
    Goldberg M, Septier D, Bourd K, Hall R, Jeanny JC, Jonet L, Colin S, Tager F, Chaussain-Miller C, Garabédian M, George A, Goldberg H, Menashi S. The dentino-enamel junction revisited. Connect Tissue Res. 2002;43:482–9.CrossRefGoogle Scholar
  6. 6.
    Gallagher RR, Demos SG, Balooch M, Marshall GW Jr, Marshall SJ. Optical spectroscopy and imaging of the dentin-enamel junction in human third molars. J Biomed Mater Res A. 2003;64:372–7.CrossRefGoogle Scholar
  7. 7.
    Marshall SJ, Balooch M, Habelitz S, Balooch G, Gallagher R, Marshall GW. The dentino-enamel junction – a natural, multilevel interface. J Eur Ceram Soc. 2003;23:2897–904.CrossRefGoogle Scholar
  8. 8.
    Radlanski RJ, Renz H. Insular dentin formation pattern in human odontogenesis in relation to the scalloped dentino-enamel junction. Ann Anat. 2007;189:243–50.CrossRefGoogle Scholar
  9. 9.
    Arsenault AL, Robinson BW. The dentino-enamel junction: a structural and microanalytical study of early mineralization. Calcif Tissue Int. 1989;45:111–21.CrossRefGoogle Scholar
  10. 10.
    Hayashi Y. High resolution electron microscopy in the dentino-enamel junction. J Electron Microsc. 1992;41:387–91.Google Scholar
  11. 11.
    Diekwisch TG, Berman BJ, Genters S, Slavkin HC. Initial enamel crystals are not spatially associated with mineralized dentin. Cell Tissue Res. 1998;279:149–67.CrossRefGoogle Scholar
  12. 12.
    Lin CP, Douglas WH, Erlandsen SL. Scanning electron microscopy of type I collagen at the dentin-enamel junction of human teeth. J Histochem Cytochem. 1993;41:381–8.CrossRefGoogle Scholar
  13. 13.
    Ohsaki Y, Nagata K. Type III collagen is a major component of interodontoblastic fibers of the developing mouse molar root. Anat Rec. 1994;240:308–13.CrossRefGoogle Scholar
  14. 14.
    Tjäderhane L, Hietala E-L, Larmas M. Mineral element analyses of carious and intact dentin by electron probe microanalyser combined with back-scattered electron image. J Dent Res. 1995;74:1770–4.CrossRefGoogle Scholar
  15. 15.
    Wang RZ, Weiner S. Strain-structure relations in human teeth using Moiré fringes. J Biomech. 1998;31:135–41.CrossRefGoogle Scholar
  16. 16.
    Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P. Graded microstructure and mechanical properties of human crown dentin. Calcif Tissue Int. 2001;69:147–57.CrossRefGoogle Scholar
  17. 17.
    Zaslansky P, Zabler S, Fratzl P. 3D variations in human crown dentin tubule orientation: a phase-contrast microtomography study. Dent Mater. 2010;26:e1–10.CrossRefGoogle Scholar
  18. 18.
    Zaslansky P, Friesem AA, Weiner S. Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: insight into tooth function. J Struct Biol. 2006;153:188–99.CrossRefGoogle Scholar
  19. 19.
    Johannessen LB. Dentine apposition in the mandibular first molars of albino rats. Arch Oral Biol. 1961;5:81–91.CrossRefGoogle Scholar
  20. 20.
    Becker J, Schuppan D, Benzian H, Bals T, Hahn EG, Cantaluppi C, Reichart P. Immunohistochemical distribution of collagens types IV, V and VI and of pro-collagen types I and III in human alveolar bone and dentine. J Histochem Cytochem. 1986;34:1417–29.CrossRefGoogle Scholar
  21. 21.
    De Coster PJ. Dentin disorders: anomalies of dentin formation and structure. Endod Topics. 2012;21:41–61.CrossRefGoogle Scholar
  22. 22.
    Karjalainen S, Söderling E, Pelliniemi L, Foidart JM. Immunohistochemical localization of types I and III collagen and fibronectin in the dentine of carious human teeth. Arch Oral Biol. 1986;31:801–6.CrossRefGoogle Scholar
  23. 23.
    Magloire H, Joffre A, Hartman DJ. Localization and synthesis of type III collagen and fibronectin in human reparative dentine. Immunoperoxidase and immunogold staining. Histochemistry. 1988;88:141–9.CrossRefGoogle Scholar
  24. 24.
    Mjör IA, Nordahl I. The density and branching of dentinal tubules in human teeth. Arch Oral Biol. 1996;41:401–12.CrossRefGoogle Scholar
  25. 25.
    Nalbandian J, Gonzales F, Sognnaes RF. Sclerotic age changes in root dentin of human teeth as observed by optical, electron, and X-ray microscopy. J Dent Res. 1960;39:598–607.CrossRefGoogle Scholar
  26. 26.
    Gotliv BA, Veis A. Peritubular dentin, a vertebrate apatitic mineralized tissue without collagen: role of a phospholipid-proteolipid complex. Calcif Tissue Int. 2007;81:191–205.CrossRefGoogle Scholar
  27. 27.
    Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57:109–21.CrossRefGoogle Scholar
  28. 28.
    Carrigan PJ, Morse DR, Furst ML, Sinai IH. A scanning electron microscopic evaluation of human dentinal tubules according to age and location. J Endod. 1984;10:359–63.CrossRefGoogle Scholar
  29. 29.
    Schellenberg U, Krey G, Bosshardt D, Nair PN. Numerical density of dentinal tubules at the pulpal wall of human permanent premolars and third molars. J Endod. 1992;18:104–9.CrossRefGoogle Scholar
  30. 30.
    Mjör IA, Smith MR, Ferrari M, Mannocci F. The structure of dentine in the apical region of human teeth. Int Endod J. 2001;34:346–53.CrossRefGoogle Scholar
  31. 31.
    Harrán Ponce E, Canalda Sahli C, Vilar Fernandez JA. Study of dentinal tubule architecture of permanent upper premolars: evaluation by SEM. Aust Endod J. 2001;27:66–72.CrossRefGoogle Scholar
  32. 32.
    Vasiliadis L, Darling AI, Levers BG. The amount and distribution of sclerotic human root dentine. Arch Oral Biol. 1983;28:645–9.CrossRefGoogle Scholar
  33. 33.
    Paqué F, Luder HU, Sener B, Zehnder M. Tubular sclerosis rather than the smear layer impedes dye penetration into the dentine of endodontically instrumented root canals. Int Endod J. 2006;39:18–25.CrossRefGoogle Scholar
  34. 34.
    Thaler A, Ebert J, Petschelt A, Pelka M. Influence of tooth age and root section on root dentine dye penetration. Int Endod J. 2008;41:1115–22.CrossRefGoogle Scholar
  35. 35.
    Montoya C, Arango-Santander S, Peláez-Vargas A, Arola D, Ossa EA. Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol. 2015;60:1811–20.CrossRefGoogle Scholar
  36. 36.
    Arola D, Ivancik J, Majd H, Fouad A, Bajaj D, Zhang X-Y, Eidelman N. Microstructure and mechanical behavior of radicular and coronal dentin. Endod Topics. 2012;20:30–51.CrossRefGoogle Scholar
  37. 37.
    Bajaj D, Sundaram N, Nazari A, Arola D. Age, dehydration and fatigue crack growth in dentin. Biomaterials. 2006;27:2507–17.CrossRefGoogle Scholar
  38. 38.
    Arola D, Reprogel RK. Effects of aging on the mechanical behavior of human dentin. Biomaterials. 2005;26:4051–61.CrossRefGoogle Scholar
  39. 39.
    Martin-De Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol. 2000;45:757–65.CrossRefGoogle Scholar
  40. 40.
    Tersariol IL, Geraldeli S, Minciotti CL, Nascimento FD, Pääkkönen V, Martins MT, Carrilho MR, Pashley DH, Tay FR, Salo T, Tjäderhane L. Cysteine cathepsins in human dentin-pulp complex. J Endod. 2010;36:475–81.CrossRefGoogle Scholar
  41. 41.
    Nascimento FD, Minciotti CL, Geraldeli S, Carrilho MR, Pashley DH, Tay FR, Nader HB, Salo T, Tjäderhane L, Tersariol ILS. Cysteine cathepsins in human carious dentin. J Dent Res. 2011;90:506–11.CrossRefGoogle Scholar
  42. 42.
    Tjäderhane L. Dentin bonding: can we make it last? Oper Dent. 2015;40:4–18.CrossRefGoogle Scholar
  43. 43.
    Tjäderhane L, Buzalaf MAR, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of “Dentin Degradomics”. Caries Res. 2015;49:193–208.CrossRefGoogle Scholar
  44. 44.
    Do D, Orrego S, Majd H, Ryou H, Mutluay MM, Xu HH, Arola DD. Accelerated fatigue of dentin with exposure to lactic acid. Biomaterials. 2013;34:8650–9.CrossRefGoogle Scholar
  45. 45.
    Orrego S, Xu H, Arola D. Degradation in the fatigue crack growth resistance of human dentin by lactic acid. Mater Sci Eng C Mater Biol Appl. 2017;73:716–25.CrossRefGoogle Scholar
  46. 46.
    Ivancik J, Neerchal NK, Romberg E, Arola D. The reduction in fatigue crack growth resistance of dentin with depth. J Dent Res. 2011;90:1031–6.CrossRefGoogle Scholar
  47. 47.
    Goracci G, Mori G, Baldi M. Terminal end of the human odontoblast process: a study using SEM and confocal microscopy. Clin Oral Investig. 1999;3:126–32.CrossRefGoogle Scholar
  48. 48.
    Ito S, Saito T, Tay FR, Carvalho RM, Yoshiyama M, Pashley DH. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J Biomed Mater Res B Appl Biomater. 2005;72:109–16.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leo Tjäderhane
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of DentistryUniversity of OuluOuluFinland
  3. 3.Helsinki University HospitalHelsinkiFinland
  4. 4.Research Unit of Oral Health Sciences, and Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of OuluOuluFinland

Personalised recommendations