Advertisement

Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems

  • Ulrich Langer
  • Svetlana MatculevichEmail author
  • Sergey Repin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10665)

Abstract

The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. Since the derivation is based on purely functional arguments, the estimates do not contain mesh dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they imply estimates for discrete norms associated with stabilised space-time IgA approximations. Finally, we illustrate the reliability and efficiency of presented error estimates for the approximate solutions recovered with IgA techniques on a model example.

Keywords

Error control Functional error estimates Stabilised space-time IgA schemes Fully-adaptive space-time schemes 

Notes

Acknowledgements

The research is supported by the Austrian Science Fund (FWF) through the NFN S117-03 project. Implementation was carried out using the open-source C++ library G+smo [19] developed at RICAM.

References

  1. 1.
    Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006). http://dx.doi.org/10.1142/S0218202506001455 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Technical report arXiv:1502.00565 [math.NA] (2015)
  3. 3.
    Dedè, L., Santos, H.A.F.A.: B-spline goal-oriented error estimators for geometrically nonlinear rods. Comput. Mech. 49(1), 35–52 (2012). http://dx.doi.org/10.1007/s00466-011-0625-2 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dörfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local \(h\)-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199(5–8), 264–275 (2010). http://dx.doi.org/10.1016/j.cma.2008.07.012 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gaevskaya, A.V., Repin, S.I.: A posteriori error estimates for approximate solutions of linear parabolic problems. Differ. Equ. 41(7), 970–983 (2005). SpringerMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29(7), 485–498 (2012). http://dx.doi.org/10.1016/j.cagd.2012.03.025 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hansbo, P.: Space-time oriented streamline diffusion methods for nonlinear conservation laws in one dimension. Comm. Numer. Meth. Eng. 10(3), 203–215 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Johannessen, K.: An adaptive isogeometric finite element analysis. Technical report, Master’s thesis, Norwegian University of Science and Technology (2009)Google Scholar
  10. 10.
    Johnson, C., Saranen, J.: Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations. Math. Comput. 47(175), 1–18 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kleiss, S.K., Tomar, S.K.: Guaranteed and sharp a posteriori error estimates in isogeometric analysis. Comput. Math. Appl. 70(3), 167–190 (2015). http://dx.doi.org/10.1016/j.camwa.2015.04.011 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kraft, R.: Adaptive and linearly independent multilevel \(B\)-splines. In: Surface Fitting and Multiresolution Methods (Chamonix-Mont-Blanc, 1996), pp. 209–218. Vanderbilt University Press, Nashville (1997)Google Scholar
  13. 13.
    Kumar, M., Kvamsdal, T., Johannessen, K.A.: Simple a posteriori error estimators in adaptive isogeometric analysis. Comput. Math. Appl. 70(7), 1555–1582 (2015). http://dx.doi.org/10.1016/j.camwa.2015.05.031 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kuru, G., Verhoosel, C.V., van der Zee, K.G., van Brummelen, E.H.: Goal-adaptive isogeometric analysis with hierarchical splines. Comput. Methods Appl. Mech. Eng. 270, 270–292 (2014).  https://doi.org/10.1016/j.cma.2013.11.026 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985).  https://doi.org/10.1007/978-1-4757-4317-3 CrossRefzbMATHGoogle Scholar
  16. 16.
    Langer, U., Matculevich, S., Repin, S.: A posteriori error estimates for space-time IgA approximations to parabolic initial boundary value problems. arXiv.org/1612.08998 [math.NA] (2016)
  17. 17.
    Langer, U., Moore, S., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution equations. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)CrossRefGoogle Scholar
  18. 18.
    Mali, O., Neittaanmäki, P., Repin, S.: Accuracy Verification Methods. Computational Methods in Applied Sciences, vol. 32. Springer, Dordrecht (2014).  https://doi.org/10.1007/978-94-007-7581-7 zbMATHGoogle Scholar
  19. 19.
    Mantzaflaris, A., et al.: G+Smo (geometry plus simulation modules) v0.8.1 (2015). http://gs.jku.at/gismo
  20. 20.
    Matculevich, S.: Fully reliable a posteriori error control for evolutionary problems. Ph.D. thesis, Jyväskylä Studies in Computing, University of Jyväskylä (2015)Google Scholar
  21. 21.
    Matculevich, S., Repin, S.: Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation. Appl. Math. Comput. 247, 329–347 (2014). http://dx.doi.org/10.1016/j.amc.2014.08.055 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Repin, S.: A Posteriori Estimates for Partial Differential Equations. Radon Series on Computational and Applied Mathematics, vol. 4. Walter de Gruyter GmbH & Co. KG, Berlin (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Repin, S.I.: Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation. Rend. Mat. Acc. Lincei 13(9), 121–133 (2002)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchnych Seminarov POMIs 243, 201–214 (1997)zbMATHGoogle Scholar
  25. 25.
    Tagliabue, A., Dedè, L., Quarteroni, A.: Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Comput. Fluids 102, 277–303 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200(49–52), 3554–3567 (2011). http://dx.doi.org/10.1016/j.cma.2011.09.004 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    van der Zee, K.G., Verhoosel, C.V.: Isogeometric analysis-based goal-oriented error estimation for free-boundary problems. Finite Elem. Anal. Des. 47(6), 600–609 (2011). http://dx.doi.org/10.1016/j.finel.2010.12.013 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A. Springer, New York (1990).  https://doi.org/10.1007/978-1-4612-0985-0 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ulrich Langer
    • 1
  • Svetlana Matculevich
    • 1
    Email author
  • Sergey Repin
    • 2
    • 3
  1. 1.RICAM Linz, Johann Radon InstituteLinzAustria
  2. 2.St. Petersburg Department of V.A. Steklov Institute of Mathematics RASSaint PetersburgRussia
  3. 3.University of JyvaskylaJyväskyläFinland

Personalised recommendations