Time Discretization/Linearization Approach Based on HOC Difference Schemes for Semilinear Parabolic Systems of Atmosphere Modelling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10665)

Abstract

We implement implicit-explicit (IMEX) linear multistep time-discretization to HOC difference schemes for weakly coupled nonlinear parabolic systems with desirable time-step restrictions and positivity preservation of the numerical solution. Numerical experiments are performed with IMEX-BDF1 (backward difference method of order one), IMEX-BDF2 (backward difference method of order two) and CN-LF (Crank-Nicolson Leap Frog) to check the properties of the methods.

Notes

Acknowledgements

This work was partially supported by the Bulgarian National Fund of Science under the grant DFNI I02-20/2014, as well as by the Program for career development of the Young scientists, BAS, Grant No. DFNP-91/04.05.2016 and by the Project 2017-FNSE-03 of the University of Ruse.

References

  1. 1.
    Bátkai, A., Csomós, P., Faragó, I., Horányi, A., Szépszó, G. (eds.): Mathematical Problems in Meteorological Modelling. MI, vol. 24. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40157-7 Google Scholar
  2. 2.
    Dimov, I., Kandilarov, J., Todorov, V., Vulkov, L.: High-order compact difference schemes with Richardson extrapolation for semilinear parabolic systems. Applications of Mathematics in Engineering and Economics (AMEE 2016). AIP Conference Proceedings, vol. 1789, pp. 030002–030002-7 (2016).  https://doi.org/10.1063/1.4968448
  3. 3.
    Dimov, I., Kandilarov, J., Todorov, V., Vulkov, L.: A comparison study of two high accuracy numerical methods for a parabolic system in air pollution modelling. arXiv:1701.03049
  4. 4.
    Dimov, I., Zlatev, Z.: Computational and Numerical Challenges in Air Polution Modelling. Elsevier Science, Amsterdam (2006)MATHGoogle Scholar
  5. 5.
    Georgiev, K., Zlatev, Z.: Implementation of sparse matrix algorithms in an advection-diffusion-chemistry model. J. Comp. Appl. Math. 236(3), 342–353 (2011)CrossRefMATHGoogle Scholar
  6. 6.
    Jacobsen, D.: Fundamental of Atmospheric Modelling. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  7. 7.
    Karatson, J., Kurics, T.: A preconditioned iterative solution schem for nonlinear parabolic systems arizing in air pollution modeling. Math. Modell. Anal. 18(5), 641–653 (2013)CrossRefMATHGoogle Scholar
  8. 8.
    Kim, J., Cho, S.: Computation accuracy and efficiency of the time splitting method. J. Atmosph. Envir. 31(15), 2215–2224 (1997)CrossRefGoogle Scholar
  9. 9.
    Mamonov, A.V., Tsai, Y.-H.R.: Point source identification in non-linear advection-diffusion-reaction systems. Inverse Prob. 29(3), 035009 (2012)CrossRefMATHGoogle Scholar
  10. 10.
    Ostromsky, T., Alexandrov, V., Dimov, I., Zlatev, Z.: On the performance, scalability and sensitivity analysis of a large air pollution model. Procedia Comput. Sci. 80, 2053–2061 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • I. Dimov
    • 1
  • J. Kandilarov
    • 2
  • V. Todorov
    • 1
  • L. Vulkov
    • 2
  1. 1.Institute of Information and Communication TechnologiesBASSofiaBulgaria
  2. 2.Department of MathematicsUniversity of RuseRuseBulgaria

Personalised recommendations