Spectral Mimetic Least-Squares Method for Div-curl Systems

  • Marc GerritsmaEmail author
  • Artur Palha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10665)


In this paper the spectral mimetic least-squares method is applied to a two-dimensional div-curl system. A test problem is solved on orthogonal and curvilinear meshes and both h- and p-convergence results are presented. The resulting solutions will be pointwise divergence-free for these test problems. For \(N>1\) optimal convergence rates on an orthogonal and a curvilinear mesh are observed. For \(N=1\) the method does not converge.


Div-curl system Spectral element method Mimetic methods 



The authors want to thank the reviewers for the valuable feedback.

Supplementary material


  1. 1.
    Bochev, P.B., Gerritsma, M.I.: A spectral mimetic least-squares method. Comput. Math. Appl. 68, 1480–1502 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Spinger, New York (2009). zbMATHGoogle Scholar
  3. 3.
    Bochev, P.B., Peterson, K., Siefert, C.: Analysis and computation of compatible least-squares methods for div-curl systems. SIAM J. Numer. Anal. 49(1), 159–181 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boulmezaoud, T.Z., Kaliche, K., Kerdid, N.: Explicit div-curl inequalities in bounded and unbounded domains of \(\mathbb{R}^3\). Ann. Univ. Ferrara 63(2), 249–276 (2017). MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bramble, J.H., Pasciak, J.E.: A new approximation technique for div-curl systems. Math. Comput. 73(248), 1739–1762 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gerritsma, M.: Edge functions for spectral element methods. In: Hesthaven, J., Rønquist, E. (eds.) Spectral and High Order Methods for Partial Differential Equations. LNCS, pp. 199–208. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  7. 7.
    Gerritsma, M., Bouman, M., Palha, A.: Least-squares spectral element method on a staggered grid. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 653–661. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  8. 8.
    Jiang, B.-N.: The Least-Squares Finite Element Method. Springer, Heidelberg (1998). CrossRefzbMATHGoogle Scholar
  9. 9.
    Nicolaides, R.A.: Direct discretization of planar div-curl problems. SIAM J. Numer. Anal. 29(1), 32–56 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nicolaides, R.A., Wang, D.-Q.: A higher-order covolume method for planar div-curl problems. Int. J. Numer. Meth. Fluid 31, 299–308 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nicolaides, R.A., Wu, X.: Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Aanl. 34(6), 2195–2203 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Palha, A., Gerritsma, M.: Mimetic least-squares spectral/hp finite element method for the poisson equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 662–670. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  13. 13.
    Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J., Gerritsma, M.I.: Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. J. Comput. Phys. 257, 1394–1422 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Palha, A., Gerritsma, M.I.: Spectral mimetic least-squares method for curl-curl problems. In: Lirkov, I., Margenov, S. (eds.) LSSC 2017. LNCS, vol. 10665, pp. 119–127. Springer, Cham (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.TU DelftDelftThe Netherlands
  2. 2.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations