Skip to main content

Concepts for Improving Machine Learning Based Landslide Assessment

  • Chapter
  • First Online:
Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques

Abstract

The main idea of this chapter is to address some of the key issues that were recognized in Machine Learning (ML) based Landslide Assessment Modeling (LAM). Through the experience of the authors, elaborated in several case studies, including the City of Belgrade in Serbia, the City of Tuzla in Bosnia and Herzegovina, Ljubovija Municipality in Serbia, and Halenkovice area in Czech Republic, eight key issues were identified, and appropriate options, solutions, and some new concepts for overcoming them were introduced. The following issues were addressed: Landslide inventory enhancements (overcoming small number of landslide instances), Choice of attributes (which attributes are appropriate and pros and cons on attribute selection/extraction), Classification versus regression (which type of task is more appropriate in particular cases), Choice of ML technique (discussion of most popular ML techniques), Sampling strategy (overcoming the overfit by choosing training instances wisely), Cross-scaling (a new concept for improving the algorithm’s learning capacity), Quasi-hazard concept (introducing artificial temporal base for upgrading from susceptibility to hazard assessment), and Objective model evaluation (the best practice for validating resulting models against the existing inventory). All of them are followed by appropriate practical examples from one of abovementioned case studies. The ultimate objective is to provide guidance and inspire LAM community for a more innovative approach in modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronoff S (2005) Remote sensing for GIS managers. ESRI Press, Readlands

    Google Scholar 

  • Baeza C, Lantada N, Amorim S (2016) Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Sci 75(19):1318

    Article  Google Scholar 

  • Bíl M, Müller I (2008) The origin of shallow landslides in Moravia (Czech Republic) in the spring of 2006. Geomorphology 99:246–253

    Article  Google Scholar 

  • Božović B, Lazić M, Sunarić D, Todorović B (1981) Prikaz stepena istraženosti i kritička analiza metodologije dosadašnjih istraživanja stabilnosti terena beogradskog područja, Simpozijum Istraživanje i sanacija klizišta, Bled, Slovenija, Knjiga 1. Zbornik radova, pp 107–118 (in Serbian)

    Google Scholar 

  • Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159

    Article  Google Scholar 

  • Brennan RL, Prediger DJ (1981) Coefficient kappa: some uses, misuses, and alternatives. Educ Psychol Measur 41(3):687–699

    Article  Google Scholar 

  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Article  Google Scholar 

  • Cama M, Conoscenti C, Lombardo L, Rotigliano E (2016) Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy). Environ Earth Sci 75:238

    Article  Google Scholar 

  • Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. ICML ‘06 Proceedings of the 23rd international conference on machine learning, Pittsburgh, June 2006, pp 161–168

    Google Scholar 

  • Chen W, Pourghasemi HR, Kornejady A, Zhang N (2017) Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 305:314–327

    Article  Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Ciurleo M, Cascini L, Calvello M (2017) A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng Geol 223:71–81

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46

    Article  Google Scholar 

  • Conoscenti C, Rotigliano E, Cama M, Caraballo-Arias NA, Lombardo L, Agnesi V (2016) Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy. Geomorphology 261:222–235

    Article  Google Scholar 

  • Dumlao AJ, Victor JA (2015) GIS-aided statistical landslide susceptibility modeling and mapping of Antipolo Rizal (Philippines). IOP Conf Ser: Earth Environ Sci 26:12031. https://doi.org/10.1088/1755-1315/26/1/012031

    Article  Google Scholar 

  • Đurić D, Mladenović A, Pešić-Georgiadis M, Marjanović M, Abolmasov B (2017) Using multiresolution and multitemporal satellite data for post-disaster landslide inventory in the Republic of Serbia. Landslides, https://doi.org/10.1007/s10346-017-0847-2

    Article  Google Scholar 

  • Erener A, Mutlub A, Düzgün HS (2016) A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng Geol 203:45–55

    Article  Google Scholar 

  • Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. the problems of two paradoxes. J Clin Epidemiol 43(6):543–549

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201

    Article  Google Scholar 

  • Foumelis M, Lekkas E, Parcharidis I (2004) Landslide susceptibility mapping by GIS-based qualitative weighting procedure in Corinth Area, Bulletin of the Geological Society of Greece, vol XXXVI, 2004 Proceedings of the 10th International Congress, Thessaloniki, April 2004, pp 904–912

    Google Scholar 

  • Gallus D, Abecker A (2008) Classification of landslide susceptibility in the development of early warning systems. 11th AGILE International Conference on Geographic Information Science, University of Girona, Spain, pp 1–17

    Google Scholar 

  • Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11. https://doi.org/10.1016/j.cageo.2015.04.007

    Article  Google Scholar 

  • Gojgić D, Petrović N, Komad Z (1995) Katastar klizišta i nestabilnih padina u funkciji prostornog i urbanističkog planiranja, projektovanja i građenja, II Simpozijum Istraživanje i sanacija klizišta, D. Milanovac, Srbija, pp 103–111 (in Serbian)

    Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66

    Article  Google Scholar 

  • Hall MA, Holmes G (2003) Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowl Data Eng 15(6):1437–1447

    Article  Google Scholar 

  • Hastie T, Tibshirani RI, Frieman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  Google Scholar 

  • Heymann Y, Steenmans C, Croissille G, Bossard M (1994) CORINE Land Cover. Technical Guide, Official Publications of the European Communities

    Google Scholar 

  • Jaafari A, Najafi A, Rezaeian J, Sattarian A, Ghajar I (2015) Planning road networks in landslide-prone areas: a case study from the northern forests of Iran. Land Use Policy 47:198–208

    Article  Google Scholar 

  • Jones R (2002) Algorithms for using a DEM for mapping catchment areas of stream sediment samples. Comput Geosci 28:1051–1060. https://doi.org/10.1016/S0098-3004(02)00022-5

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439. https://doi.org/10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • Kircher K, Krejčí O, Máčka Z, Bíl M (2000) Slope deformations in Eastern Moravia, Vsetín District (Outer Western Carpathians). Acta Universitas Carolinae 35:133–143

    Google Scholar 

  • Kornejady A, Ownegh M, Bahremand A (2017) Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. CATENA 152:144–162

    Article  Google Scholar 

  • Kukemilks K, Saks T (2013) Landslides and gully slope erosion on the banks of the Gauja River between the towns of Sigulda and Līgatne. Est J Earth Sci 62:231. https://doi.org/10.3176/earth.2013.17

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 3:159–174

    Article  Google Scholar 

  • Lokin P, Pavlović R, Trivić B, Lazić M, Batalović K, Đurić U (2012) Belgrade landslide cadastre, XIV simpozijum iz Inženjerske geologije i Geotehnike, proceedings, Belgrade, Serbia, pp 389–403 (in Serbian)

    Google Scholar 

  • Lombardo L, Cama M, Maerker M, Rotigliano E (2014) A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster. Nat Hazards 74:1951–1989

    Article  Google Scholar 

  • Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci (Calcutta) 2:49–55

    Google Scholar 

  • Malamud B, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234

    Article  Google Scholar 

  • Marjanović M (2013) Comparing the performance of different landslide susceptibility models in ROC space. In: Margottini C et al (eds) Landslide science and practice, vol 1, Springer, Berlin. https://doi.org/10.1007/978-3-642-31325-7_76

    Chapter  Google Scholar 

  • Marjanović M (2014) Conventional and machine learning methods for landslide assessment in GIS. Palacky University, Olomouc, Czech Republic

    Google Scholar 

  • Marjanović M, Đurić U, (2016) From landslide inventory to landslide risk assessment: methodology, current practice and challenges. III Congress of Geologists of the Republic of Macedonia, 30 Sept–2 Oct 2016, Struga Macedonia, pp 199–208

    Google Scholar 

  • Mitchell TM (1997) Machine learning. McGraw Hill, New York

    Google Scholar 

  • Moosavi V, Niazi Y (2016) Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides 13(1):97–114

    Article  Google Scholar 

  • Mumic E, Glade T, Hasel S (2013) Analysis of landslides triggered in 2010 in Tuzla, Bosnia and Herzegowina. Geophysical Research Abstracts EGU General Assembly 2013, Abstract #13016

    Google Scholar 

  • Oommen T, Baise LG, Vogel RM (2011) Sampling bias and class imbalance in maximum-likelihood logistic regression. Math Geosci 43:99–120

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68:1443. https://doi.org/10.1007/s12665-012-1842-5

    Article  Google Scholar 

  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB (2016) A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw 84:240–250

    Article  Google Scholar 

  • Pontius RG Jr, Millones M (2011) Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365. https://doi.org/10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  • Shahabi H, Khezri S, Ahmad BB, Hashim M (2014) Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. CATENA 115:55–70. https://doi.org/10.1016/j.catena.2013.11.014

    Article  Google Scholar 

  • Sharma LP, Patel N, Debnath P, Ghose MK (2012) Assessing landslide vulnerability from soil characteristics-a GIS-based analysis. Arab J Geosci 5:789–796. https://doi.org/10.1007/s12517-010-0272-5

    Article  Google Scholar 

  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I (2017) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76(2):60

    Article  Google Scholar 

  • Spitznagel EL, Helzer JE (1985) A proposed solution to the base rate problem in the kappa statistic. Arch Gen Psychiatry 42(7):725–728

    Article  Google Scholar 

  • Steger S, Brenning A, Bell R, Petschko H, Glade T (2016) Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology 262:8–23

    Article  Google Scholar 

  • Tsangaratos P, Ilia I (2017) Landslide assessments through soft computing techniques within a GIS-based framework. Am J Geogr Inf Syst 6(1A), https://doi.org/10.5923/s.ajgis.201701

  • Tsangaratos P, Benardos A (2014) Estimating landslide susceptibility through an artificial neural network classifier. Nat Hazards 74(3):1489–1516

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. International Association for Engineering Geology, Paris, France, p 63

    Google Scholar 

  • Wang Q, Li W, Chen W, Bai H (2015) GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. J Earth Syst Sci 124(7):1399–1415

    Article  Google Scholar 

  • Witten IH, Frank E, Hall MA (2011) Data mining practical machine learning tools and techniques. Elsevier, Burlington

    Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287

    Article  Google Scholar 

  • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572–582. https://doi.org/10.1016/j.geomorph.2008.02.011

    Article  Google Scholar 

  • Yilmaz I (2009) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836. https://doi.org/10.1007/s12665-009-0394-9

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13:839–856

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project No TR 36009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Marjanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marjanović, M., Samardžić-Petrović, M., Abolmasov, B., Đurić, U. (2019). Concepts for Improving Machine Learning Based Landslide Assessment. In: Pourghasemi, H., Rossi, M. (eds) Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. Advances in Natural and Technological Hazards Research, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-73383-8_2

Download citation

Publish with us

Policies and ethics