Advertisement

Computationally Complete Generalized Communicating P Systems with Three Cells

  • Erzsébet Csuhaj-Varjú
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10725)

Abstract

Generalized communicating P systems are particular variants of networks of cells where each rule moves only two objects. In this paper we show that GCPSs with three cells and with only join, or only split, or only chain rules are computationally complete computing devices. These bounds are improvements of the previous results.

Notes

Acknowledgment

The work of E. CS-V. was supported by the National Research, Development, and Innovation Office - NKFIH, Hungary, Grant no. K 120558.

References

  1. 1.
    Balaskó, Á., Csuhaj-Varjú, E., Vaszil, G.: Dynamically changing environment for generalized communicating P systems. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 92–105. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28475-0_7 CrossRefGoogle Scholar
  2. 2.
    Csuhaj-Varjú, E., Vaszil, G., Verlan, S.: On generalized communicating P systems with one symbol. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 160–174. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-18123-8_14 CrossRefGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Verlan, S.: On generalized communicating P systems with minimal interaction rules. Theor. Comput. Sci. 412, 124–135 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77312-2_17 CrossRefGoogle Scholar
  5. 5.
    Krishna, S.N., Gheorghe, M., Dragomir, C.: Some classes of generalised communicating P systems and simple kernel P systems. Technical report, CS-12-03, University of Sheffield (2013). http://staffwww.dcs.shef.ac.uk/people/M.Gheorghe/research/paperlist.html
  6. 6.
    Krishna, S.N., Gheorghe, M., Dragomir, C.: Some classes of generalised communicating P systems and simple kernel P systems. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 284–293. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39053-1_33 CrossRefGoogle Scholar
  7. 7.
    Krishna, S.N., Gheorghe, M., Ipate, F., Csuhaj-Varjú, E., Ceterchi, R.: Further results on generalised communicating P systems. Theor. Comput. Sci. (2017, in press).  https://doi.org/10.1016/j.tcs.2017.05.020
  8. 8.
    Minsky, M.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  9. 9.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  10. 10.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5 zbMATHGoogle Scholar
  11. 11.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Computational completeness of tissue P systems with conditional uniport. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 521–535. Springer, Heidelberg (2006).  https://doi.org/10.1007/11963516_33 CrossRefGoogle Scholar
  12. 12.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized communicating P systems. Theor. Comput. Sci. 404(1–2), 170–184 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Algorithms and Their Applications, Faculty of InformaticsELTE Eötvös Loránd UniversityBudapestHungary
  2. 2.Université Paris Est, LACL (EA 4219), UPECCréteilFrance

Personalised recommendations