Bi-simulation Between P Colonies and P Systems with Multi-stable Catalysts

  • Erzsébet Csuhaj-VarjúEmail author
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10725)


The general concept, called the formal framework of P systems provides a representation to study and analyze different variants of P systems. In this paper, two well-known models, P colonies and P systems with multi-stable catalysts are considered. We show that the obtained representations are identical, thus both models can be related using a bi-simulation. This fact opens new approaches for studying both P colonies and catalytic P systems.


Formal Framework Maximum Parallelism Forbidding Conditions Distinguished Catalysts Strong Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of E. CS-V. was supported by the National Research, Development, and Innovation Office - NKFIH, Hungary, Grant no. K 120558.


  1. 1.
    Cienciala, L., Ciencialová, L., Kelemenová, A.: Homogeneous P colonies. Comput. Inform. 27(3), 481–496 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ciencialová, L., Cienciala, L., Sosík, P.: P colonies with evolving environment. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 151–164. Springer, Cham (2017). CrossRefGoogle Scholar
  3. 3.
    Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., Sosík, P.: P colonies. Bull. Int. Membr. Comput. Soc. 1(2), 119–156 (2016)zbMATHGoogle Scholar
  4. 4.
    Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., Verlan, S.: A formalization of membrane systems with dynamically evolving structures. Int. J. Comput. Math. 90(4), 801–815 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  6. 6.
    Milner, R.: An algebraic definition of simulation between programs. In: Proceedings of the 2nd International Joint Conference on Artificial Intelligence, IJCAI 1971, San Francisco, CA, USA, pp. 481–489. Morgan Kaufmann Publishers Inc. (1971)Google Scholar
  7. 7.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2009)Google Scholar
  8. 8.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vols. 1–3. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Verlan, S.: Study of language-theoretic computational paradigms inspired by biology. Habilitation thesis, Université Paris Est (2010)Google Scholar
  10. 10.
    Verlan, S.: Using the formal framework for P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 56–79. Springer, Heidelberg (2014). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Algorithms and Their Applications, Faculty of InformaticsELTE Eötvös Loránd UniversityBudapestHungary
  2. 2.Université Paris Est, LACL (EA 4219), UPECCréteilFrance

Personalised recommendations