Controlled Reversibility in Reaction Systems

  • Bogdan Aman
  • Gabriel Ciobanu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10725)


We study the controlled reversibility in reaction systems, a bio-inspired formalism in which the reactions take place only if some inhibitors are not present. Forward reactions are exactly those of the reaction systems, while reverse reactions happen when a special symbol indicates a change in the environment. The reversible reaction systems are translated into rewriting systems which are executable on the Maude software platform. Given such an implementation, several properties of the reversible reaction systems could be verified.



We thank the reviewers for their helpful comments and suggestions. This work was partially supported by the COST Action IC1405.


  1. 1.
    Agrigoroaiei, O., Ciobanu, G.: Dual P systems. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 95–107. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  2. 2.
    Agrigoroaiei, O., Ciobanu, G.: Rewriting logic specification of membrane systems with promoters and inhibitors. Electron. Notes Theor. Comput. Sci. 238, 5–22 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Agrigoroaiei, O., Ciobanu, G.: Reversing computation in membrane systems. J. Logic Algebraic Program. 79, 278–288 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alhazov, A., Aman, B., Freund, R., Ivanov, S.: Simulating R systems by P systems. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 51–66. Springer, Cham (2017). CrossRefGoogle Scholar
  5. 5.
    Alhazov, A., Morita, K.: On reversibility and determinism in P systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 158–168. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  6. 6.
    Andrei, O., Ciobanu, G., Lucanu, D.: Executable specifications of P systems. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 126–145. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  7. 7.
    Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fundamenta Informaticae 131(3–4), 299–312 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Azimi, S., Panchal, C., Czeizler, E., Petre, I.: Reaction systems models for the self-assembly of intermediate filaments. Ann. Univ. Buchar. LXII(2), 9–24 (2015)Google Scholar
  9. 9.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All About Maude - A High Performance Logical Framework: How to Specify, Program, and Verify Systems in Rewriting Logic. Springer, Heidelberg (2007). zbMATHGoogle Scholar
  12. 12.
    Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  13. 13.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75(1), 263–280 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2), 279–308 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Leporati, A., Zandron, C., Mauri, G.: Reversible P systems to simulate Fredkin circuits. Fundamenta Informaticae 74(4), 529–548 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kari, L., Rozenberg, G.: The many facets of natural computing. Commun. ACM 51, 72–83 (2008)CrossRefGoogle Scholar
  17. 17.
    Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 20–35. Springer, Cham (2016). CrossRefGoogle Scholar
  18. 18.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998). CrossRefGoogle Scholar
  19. 19.
    Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81(7–8), 721–781 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci. 168, 303–320 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Morita, K., Yamaguchi, Y.: A universal reversible Turing machine. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  22. 22.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Păun, G., Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P systems and R systems. Theor. Comput. Sci. 429, 258–264 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania

Personalised recommendations