Advertisement

Hierarchical P Systems with Randomized Right-Hand Sides of Rules

  • Artiom Alhazov
  • Rudolf Freund
  • Sergiu Ivanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10725)

Abstract

P systems are a model of hierarchically compartmentalized multiset rewriting. We introduce a novel kind of P systems in which rules are dynamically constructed in each step by non-deterministic pairing of left-hand and right-hand sides. We define three variants of right-hand side randomization and compare each of them with the power of conventional P systems. It turns out that all three variants enable non-cooperative P systems to generate exponential (and thus non-semi-linear) number languages. We also give a binary normal form for one of the variants of P systems with randomized rule right-hand sides.

References

  1. 1.
    Alhazov, A.: A note on P systems with activators. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on Membrane Computing, Sevilla, Spain, 2–7 February 2004, pp. 16–19 (2004)Google Scholar
  2. 2.
    Alhazov, A., Freund, R., Ivanov, S.: P systems with randomized right-hand sides of rules. In: 15th Brainstorming Week on Membrane Computing, Sevilla, Spain, 31 January–5 February 2017 (2017)Google Scholar
  3. 3.
    Alhazov, A., Freund, R., Ivanov, S., Oswald, M.: Observations on P systems with states. In: Gheorghe, M., Petre, I., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) Multidisciplinary Creativity. Hommage to Gheorghe Păun on His 65th Birthday, Spandugino (2015)Google Scholar
  4. 4.
    Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 81–94. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-18123-8_9 CrossRefGoogle Scholar
  5. 5.
    Arroyo, F., Baranda, A.V., Castellanos, J., Păun, G.: Membrane computing: the power of (rule) creation. J. Univers. Comput. Sci. 8, 369–381 (2002)zbMATHGoogle Scholar
  6. 6.
    Çapuni, I., Gács, P.: A turing machine resisting isolated bursts of faults. CoRR, abs/1203.1335 (2012)Google Scholar
  7. 7.
    Cavaliere, M., Genova, D.: P systems with symport/antiport of rules. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on Membrane Computing, Sevilla, Spain, 2–7 February 2004, pp. 102–116 (2004)Google Scholar
  8. 8.
    Cavaliere, M., Ionescu, M., Ishdorj, T.-O.: Inhibiting/de-inhibiting rules in P systems. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 224–238. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31837-8_13 CrossRefGoogle Scholar
  9. 9.
    Freund, R.: Generalized P-systems. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 281–292. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48321-7_23 CrossRefGoogle Scholar
  10. 10.
    Freund, R.: P systems working in the sequential mode on arrays and strings. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 188–199. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30550-7_16 CrossRefGoogle Scholar
  11. 11.
    Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 173–188. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_13 CrossRefGoogle Scholar
  12. 12.
    Ivanov, S.: Polymorphic P systems with non-cooperative rules and no ingredients. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 258–273. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14370-5_16 Google Scholar
  13. 13.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., New York (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, New York (1997).  https://doi.org/10.1007/978-3-642-59126-6 zbMATHGoogle Scholar
  16. 16.
    Bulletin of the International Membrane Computing Society (IMCS). http://membranecomputing.net/IMCSBulletin/index.php
  17. 17.
    The P Systems Website. http://ppage.psystems.eu/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Rudolf Freund
    • 3
  • Sergiu Ivanov
    • 4
    • 5
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of AutomationHuazhong University of Science and TechnologyWuhanChina
  3. 3.Faculty of InformaticsTU WienViennaAustria
  4. 4.LACL, Université Paris Est – Créteil Val de MarneCréteilFrance
  5. 5.TIMC-IMAG/DyCTiM, Faculty of Medicine of GrenobleLa TroncheFrance

Personalised recommendations