Advertisement

Families of Languages Encoded by SN P Systems

  • José M. SempereEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10725)

Abstract

In this work, we propose the study of SN P systems as classical information encoders. By taking the spike train of an SN P system as a (binary) source of information, we can obtain different languages according to a previously defined encoding alphabet. We provide a characterization of the language families generated by the SN P systems in this way. This characterization depends on the way we define the encoding scheme: bounded or not bounded and, in the first case, with one-to-one or non injective encodings. Finally, we propose a network topology in order to define a cascading encoder.

Keywords

SN P systems Formal languages Codes Word enumerations 

Notes

Acknowledgements

Part of this work appeared as Families of Languages Associated with SN P Systems: Preliminary Ideas, Open Problems. Gh. Păun, J.M. Sempere. Bulletin of the Membrane Computing Society, Issue 2, December 2016, pp. 161–164. http://membranecomputing.net/IMCSBulletin/. The author is indebted to Gh. Păun for his original contribution to this work.

References

  1. 1.
    Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string languages generated by spiking neural P systems. Fundam. Inf. 75(1–4), 141–162 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chen, H., Ionescu, M., Păun, A., Păun, G., Popa, B.: On trace languages generated by spiking neural P systems. In: Eighth International Workshop on Descriptional Complexity of Formal Systems (DCFS 2006), Las Cruces, New Mexico, USA, pp. 94–105, 21–23 June 2006Google Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: On counter machines versus dP automata. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 138–150. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_11 CrossRefGoogle Scholar
  4. 4.
    Ibarra, O.H., Leporati, A., Păun, A., Woodworth, S.: Spiking neural P systems. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, Oxford University Press (2010)Google Scholar
  5. 5.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inf. 71(2–3), 279–308 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Manca, V.: On the generative power of iterated transduction. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Transductions, pp. 315–327. World Scientific (2001)Google Scholar
  7. 7.
    Manca, V., Martín-Vide, C., Păun, G.: New computing paradigms suggested by DNA computing: computing by carving. BioSystems 52, 47–54 (1999)CrossRefGoogle Scholar
  8. 8.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-642-56196-2 CrossRefzbMATHGoogle Scholar
  9. 9.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5 zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations