Families of Languages Encoded by SN P Systems

  • José M. SempereEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10725)


In this work, we propose the study of SN P systems as classical information encoders. By taking the spike train of an SN P system as a (binary) source of information, we can obtain different languages according to a previously defined encoding alphabet. We provide a characterization of the language families generated by the SN P systems in this way. This characterization depends on the way we define the encoding scheme: bounded or not bounded and, in the first case, with one-to-one or non injective encodings. Finally, we propose a network topology in order to define a cascading encoder.


SN P systems Formal languages Codes Word enumerations 



Part of this work appeared as Families of Languages Associated with SN P Systems: Preliminary Ideas, Open Problems. Gh. Păun, J.M. Sempere. Bulletin of the Membrane Computing Society, Issue 2, December 2016, pp. 161–164. The author is indebted to Gh. Păun for his original contribution to this work.


  1. 1.
    Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string languages generated by spiking neural P systems. Fundam. Inf. 75(1–4), 141–162 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chen, H., Ionescu, M., Păun, A., Păun, G., Popa, B.: On trace languages generated by spiking neural P systems. In: Eighth International Workshop on Descriptional Complexity of Formal Systems (DCFS 2006), Las Cruces, New Mexico, USA, pp. 94–105, 21–23 June 2006Google Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: On counter machines versus dP automata. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 138–150. Springer, Heidelberg (2014). CrossRefGoogle Scholar
  4. 4.
    Ibarra, O.H., Leporati, A., Păun, A., Woodworth, S.: Spiking neural P systems. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, Oxford University Press (2010)Google Scholar
  5. 5.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inf. 71(2–3), 279–308 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Manca, V.: On the generative power of iterated transduction. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Transductions, pp. 315–327. World Scientific (2001)Google Scholar
  7. 7.
    Manca, V., Martín-Vide, C., Păun, G.: New computing paradigms suggested by DNA computing: computing by carving. BioSystems 52, 47–54 (1999)CrossRefGoogle Scholar
  8. 8.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002). CrossRefzbMATHGoogle Scholar
  9. 9.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Heidelberg (1997). zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations