SkQ1: The Road from Laboratory Bench to the Market

Chapter

Abstract

SkQ1 and other mitochondria-targeted plastoquinone derivatives are promising drug candidates for the treatment of pathologies associated with mitochondrial dysfunction. Experiments in animals revealed that SkQ alleviates damage induced by ischemia-reperfusion injury, prevents autoimmune arthritis, suppresses the development of Alzheimer’s disease signs, inhibits the development of ophthalmological disorders, including dry eye syndrome (DES), and has anti-inflammatory activity. The first SkQ-based drug (Visomitin eye drops) is already developed and registered in Russia; clinical studies of orally administered drug is in progress. In this review, we summarize recent experimental data on SkQ effects in animals, results of clinical trials and future perspectives of mitochondria-targeted antioxidants as therapeutic compounds.

Keywords

SkQ1 Mitochondria-targeted plastoquinone derivatives Drug development Dry eye syndrome Visomitin Clinical trials 

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 14-50-00029).

Conflict of Interest

 M.V.S. is the general director of Mitotech LLC, a biotech company which owns rights for compounds of SkQ type.

References

  1. Andreev-Andrievskiy AA, Kolosova NG, Stefanova NA, Lovat MV, Egorov MV, Manskikh VN, Zinovkin RA, Galkin II, Prikhodko AS, Skulachev MV, Lukashev AN (2016) Efficacy of mitochondrial antioxidant plastoquinonyl-decyl-triphenylphosphonium bromide (SkQ1) in the rat model of autoimmune arthritis. Oxidative Med Cell Longev 2016:8703645CrossRefGoogle Scholar
  2. Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OY, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Roginsky VA, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Vassiliev JM, Vyssokikh MY, Yaguzhinsky LS, Zamyatnin AA Jr, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 73:1273–1287CrossRefGoogle Scholar
  3. Bakeeva LE, Grinius LL, Jasaitis AA, Kuliene VV, Levitsky DO, Liberman EA, Severina II, Skulachev VP (1970) Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim Biophys Acta 216:13–21CrossRefPubMedGoogle Scholar
  4. Bakeeva LE, Barskov IV, Egorov MV, Isaev NK, Kapelko VI, Kazachenko AV, Kirpatovsky VI, Kozlovsky SV, Lakomkin VL, Levina SB, Pisarenko OI, Plotnikov EY, Saprunova VB, Serebryakova LI, Skulachev MV, Stelmashook EV, Studneva IM, Tskitishvili OV, Vasilyeva AK, Victorov IV, Zorov DB, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc) 73:1288–1299CrossRefGoogle Scholar
  5. Bakeeva LE, Eldarov CM, Vangely IM, Kolosova NG, Vays VB (2016) Mitochondria-targeted antioxidant SkQ1 reduces age-related alterations in the ultrastructure of the lacrimal gland. Oncotarget 7:80208–80222CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134CrossRefPubMedGoogle Scholar
  7. Brzheskiy VV, Efimova EL, Vorontsova TN, Alekseev VN, Gusarevich OG, Shaidurova KN, Ryabtseva AA, Andryukhina OM, Kamenskikh TG, Sumarokova ES, Miljudin ES, Egorov EA, Lebedev OI, Surov AV, Korol AR, Nasinnyk IO, Bezditko PA, Muzhychuk OP, Vygodin VA, Yani EV, Savchenko AY, Karger EM, Fedorkin ON, Mironov AN, Ostapenko V, Popeko NA, Skulachev VP, Skulachev MV (2015) Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of visomitin eye drops in patients with dry eye syndrome. Adv Ther 32:1263–1279CrossRefPubMedPubMedCentralGoogle Scholar
  8. Erichev VP, Kozlova IV, Reshchikova VS, Alekseev VN, Levko MA, Zamyatnin AAJ, Gudkova EY, Kovaleva NA, Vygodin VA, Fedorkin ON, Ostapenko V, Senin II, Savchenko AY, Popeko NA, Skulachev VP, Skulachev MV (2016) Efficacy and safety of Visomitin® eye drops, in patients with age-related cataract: a randomized, double-blind, placebo-controlled clinical study. Nat.J.Glaucoma(Rus.) 1:61–69Google Scholar
  9. Feniouk BA, Skulachev VP (2018) Studies on mitochondria directed plastoquinones. In: Oliveira PJ (ed) Mitochondrial biology and experimental therapeutics. Springer, New YorkGoogle Scholar
  10. Galkin II, Pletjushkina OY, Zinovkin RA, Zakharova VV, Chernyak BV, Popova EN (2016) Mitochondria-targeted antioxidant SkQR1 reduces TNF-induced endothelial permeability in vitro. Biochemistry (Mosc) 81:1188–1197CrossRefGoogle Scholar
  11. Green DE (1974) The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta 346:27–78CrossRefPubMedGoogle Scholar
  12. Iomdina EN, Khoroshilova-Maslova IP, Robustova OV, Averina OA, Kovaleva NA, Aliev G, Reddy VP, Zamyatnin AA Jr, Skulachev MV, Senin II, Skulachev VP (2015) Mitochondria-targeted antioxidant SkQ1 reverses glaucomatous lesions in rabbits. Front Biosci (Landmark Ed) 20:892–901CrossRefGoogle Scholar
  13. Isaev NK, Novikova SV, Stelmashook EV, Barskov IV, Silachev DN, Khaspekov LG, Skulachev VP, Zorov DB (2012) Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. Biochemistry (Mosc) 77:996–999CrossRefGoogle Scholar
  14. James AM, Cocheme HM, Smith RA, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295–21312CrossRefPubMedGoogle Scholar
  15. Jiang Y, Liu C, Lei B, Xu X, Lu B (2017) Mitochondria-targeted antioxidant SkQ1 improves spermatogenesis in Immp2l mutant mice. Andrologia.  https://doi.org/10.1111/and.12848
  16. Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A (2007) A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A 104:16227–16232CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kapay NA, Isaev NK, Stelmashook EV, Popova OV, Zorov DB, Skrebitsky VG, Skulachev VP (2011) In vivo injected mitochondria-targeted plastoquinone antioxidant SkQR1 prevents beta-amyloid-induced decay of long-term potentiation in rat hippocampal slices. Biochemistry (Mosc) 76:1367–1370CrossRefGoogle Scholar
  18. Kapay NA, Popova OV, Isaev NK, Stelmashook EV, Kondratenko RV, Zorov DB, Skrebitsky VG, Skulachev VP (2013) Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-beta-induced impairment of long-term potentiation in rat hippocampal slices. J Alzheimers Dis 36:377–383PubMedGoogle Scholar
  19. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596CrossRefPubMedGoogle Scholar
  20. Kolosova NG, Shcheglova TV, Sergeeva SV, Loskutova LV (2006) Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats. Neurobiol Aging 27:1289–1297CrossRefPubMedGoogle Scholar
  21. Kolosova NG, Tyumentsev MA, Muraleva NA, Kiseleva E, Vitovtov AO, Stefanova NA (2017) Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mitochondrial deterioration. Curr Alzheimer Res 14(12):1283–1292CrossRefPubMedGoogle Scholar
  22. Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076–1078CrossRefPubMedGoogle Scholar
  23. Manskikh VN, Gancharova OS, Nikiforova AI, Krasilshchikova MS, Shabalina IG, Egorov MV, Karger EM, Milanovsky GE, Galkin II, Skulachev VP, Zinovkin RA (2015) Age-associated murine cardiac lesions are attenuated by the mitochondria-targeted antioxidant SkQ1. Histol Histopathol 30:353–360PubMedGoogle Scholar
  24. Markovets AM, Fursova AZ, Kolosova NG (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression. PLoS One 6:e21682CrossRefPubMedPubMedCentralGoogle Scholar
  25. Muraleva NA, Kozhevnikova OS, Zhdankina AA, Stefanova NA, Karamysheva TV, Fursova AZ, Kolosova NG (2014) The mitochondria-targeted antioxidant SkQ1 restores alphaB-crystallin expression and protects against AMD-like retinopathy in OXYS rats. Cell Cycle 13:3499–3505CrossRefPubMedPubMedCentralGoogle Scholar
  26. Neroev VV, Archipova MM, Bakeeva LE, Fursova AZ, Grigorian EN, Grishanova AY, Iomdina EN, Ivashchenko ZN, Katargina LA, Khoroshilova-Maslova IP, Kilina OV, Kolosova NG, Kopenkin EP, Korshunov SS, Kovaleva NA, Novikova YP, Philippov PP, Pilipenko DI, Robustova OV, Saprunova VB, Senin II, Skulachev MV, Sotnikova LF, Stefanova NA, Tikhomirova NK, Tsapenko IV, Shchipanova AI, Zinovkin RA, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals. Biochemistry (Mosc) 73:1317–1328CrossRefGoogle Scholar
  27. Ousler GW, Gomes PJ, Welch D, Abelson MB (2005) Methodologies for the study of ocular surface disease. Ocul Surf 3:143–154CrossRefPubMedGoogle Scholar
  28. Pasyukova EG, Feniouk BA, Skulachev VP (2017) Mitochondria-targeted rechargeable antioxidants as potential anti-aging drugs. In: Vaiserman A (ed) Anti-aging drugs: from basic research to clinical practice. Royal Society of Chemistry, LondonGoogle Scholar
  29. Perepechaeva ML, Grishanova AY, Rudnitskaya EA, Kolosova NG (2014) The mitochondria-targeted antioxidant SkQ1 downregulates aryl hydrocarbon receptor-dependent genes in the retina of OXYS rats with AMD-like retinopathy. J Ophthalmol 2014:530943CrossRefPubMedPubMedCentralGoogle Scholar
  30. Petrov A, Perekhvatova N, Skulachev M, Stein L, Ousler G (2016) SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model. Adv Ther 33:96–115CrossRefPubMedPubMedCentralGoogle Scholar
  31. Plotnikov EY, Chupyrkina AA, Jankauskas SS, Pevzner IB, Silachev DN, Skulachev VP, Zorov DB (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim Biophys Acta 1812:77–86CrossRefPubMedGoogle Scholar
  32. Plotnikov EY, Morosanova MA, Pevzner IB, Zorova LD, Manskikh VN, Pulkova NV, Galkina SI, Skulachev VP, Zorov DB (2013) Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proc Natl Acad Sci U S A 110:E3100–E3108CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rumyantseva YV, Ryabchikova EI, Fursova AZ, Kolosova NG (2015) Ameliorative effects of SkQ1 eye drops on cataractogenesis in senescence-accelerated OXYS rats. Graefes Arch Clin Exp Ophthalmol 253:237–248CrossRefPubMedGoogle Scholar
  34. Saprunova VB, Lelekova MA, Kolosova NG, Bakeeva LE (2012) SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of wistar and OXYS rats. Biochemistry (Mosc) 77:648–658CrossRefGoogle Scholar
  35. Sergeeva S, Bagryanskaya E, Korbolina E, Kolosova N (2006) Development of behavioural dysfunctions in accelerated-senescence OXYS rats is associated with early postnatal alterations in brain phosphate metabolism. Exp Gerontol 41:141–150CrossRefPubMedGoogle Scholar
  36. Shabalina IG, Vyssokikh MY, Gibanova N, Csikasz RI, Edgar D, Hallden-Waldemarson A, Rozhdestvenskaya Z, Bakeeva LE, Vays VB, Pustovidko AV, Skulachev MV, Cannon B, Skulachev VP, Nedergaard J (2017) Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1. Aging (Albany NY) 9:315–339Google Scholar
  37. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787:437–461CrossRefPubMedGoogle Scholar
  38. Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA Jr, Zorov DB, Skulachev VP (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12:800–826CrossRefPubMedGoogle Scholar
  39. Stefanova NA, Muraleva NA, Maksimova KY, Rudnitskaya EA, Kiseleva E, Telegina DV, Kolosova NG (2016) An antioxidant specifically targeting mitochondria delays progression of Alzheimer's disease-like pathology. Aging (Albany NY) 8:2713–2733CrossRefGoogle Scholar
  40. Yanshole LV, Yanshole VV, Snytnikova OA, Fursova A, Kolosova NG, Tsentalovich YP, Sagdeev RZ (2015) Effect of SkQ1 eye drops on the rat lens metabolomic composition and the chaperone activity of alpha-crystallin. Dokl Biochem Biophys 464:341–345CrossRefPubMedGoogle Scholar
  41. Zakharova VV, Pletjushkina OY, Galkin II, Zinovkin RA, Chernyak BV, Krysko DV, Bachert C, Krysko O, Skulachev VP, Popova EN (2017) Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. Biochim Biophys Acta 1863:968–977CrossRefPubMedGoogle Scholar
  42. Zhang YB, Meng YH, Chang S, Zhang RY, Shi C (2016) High fructose causes cardiac hypertrophy via mitochondrial signaling pathway. Am J Transl Res 8:4869–4880PubMedPubMedCentralGoogle Scholar
  43. Zinovkin RA, Romaschenko VP, Galkin II, Zakharova VV, Pletjushkina OY, Chernyak BV, Popova EN (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging (Albany NY) 6:661–674CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.A.N. Belozersky Institute of Physico–Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of MitoengineeringMoscow State UniversityMoscowRussia

Personalised recommendations