Recovering Mitochondrial Function in Patients’ Fibroblasts

  • Mariusz R. Wieckowski
  • Alberto Danese
  • Giampaolo Morciano
  • Maciej Pronicki
  • Jerzy Duszynski
  • Paolo Pinton
  • Agnieszka Karkucinska-Wieckowska
Chapter

Abstract

Despite the fact that majority of studies done using different compounds with antioxidant properties showing pivotal effect on oxidative phosphorylation or glycolytic ATP production, it is still difficult to discuss efficient therapeutic solutions for patients affected by mitochondrial diseases or mitochondrial dysfunction-associated disorders. Since most of the mitochondrial disorders are manifested in tissues or organs that demand high-energy, many experimental studies have described that the pivotal effect of the tested compounds comes from the use of the skin fibroblasts from patients. In this chapter, we have gathered information about these studies and describe the effect of such treatment on mitochondrial function and the attenuation of oxidative stress in patients’ fibroblasts.

Keywords

Mitochondrial disorders Patients’ fibroblasts Reactive oxygen species (ROS) Oxidative stress 

Notes

Acknowledgments 

This work was supported by the Polish National Science Centre grant (UMO-2014/15/B/NZ1/00490) to MRW and AKW and by the Internal Projects of the Children’s Memorial Health Institute No S125/2012 for MP and AKW. PP is grateful to Camilla degli Scrovegni for providing continuous support. PP is grateful to Camilla degli Scrovegni for continuous support. PP is supported by the Italian Ministry of Education, University and Research; the Italian Ministry of Health; Telethon (GGP15219/B); the Italian Association for Cancer Research (AIRC: IG-18624); and by local funds from the University of Ferrara).

Conflict of Interest

 The authors state that there are no conflicts of interest relevant for this publication.

References

  1. Angebault C, Gueguen N, Desquiret-Dumas V, Chevrollier A, Guillet V, Verny C, Cassereau J, Ferre M, Milea D, Amati-Bonneau P, Bonneau D, Procaccio V, Reynier P, Loiseau D (2011) Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res Notes 4:557CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34(12):1475–1486CrossRefPubMedGoogle Scholar
  3. Bonora M, Morganti C, Morciano G, Pedriali G, Lebiedzinska-Arciszewska M, Aquila G, Giorgi C, Rizzo P, Campo G, Ferrari R, Kroemer G, Wieckowski MR, Galluzzi L, Pinton P. (2017) Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. EMBO Rep 18(7):1077–1089Google Scholar
  4. Cárdenas C, Foskett JK (2012) Mitochondrial Ca(2+) signals in autophagy. Cell Calcium 52(1):44–51CrossRefPubMedPubMedCentralGoogle Scholar
  5. Casarin A, Giorgi G, Pertegato V, Siviero R, Cerqua C, Doimo M, Basso G, Sacconi S, Cassina M, Rizzuto R, Brosel S, M Davidson M, Dimauro S, Schon EA, Clementi M, Trevisson E, Salviati L (2012) Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis 7:21CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chang JC, Liu KH, Chuang CS, Su HL, Wei YH, Kuo SJ, Liu CS (2013) Treatment of human cells derived from MERRF syndrome by peptide-mediated mitochondrial delivery. Cytotherapy 15(12):1580–1596CrossRefPubMedGoogle Scholar
  7. Clauser B, Scibak JW (1990) Direct and generalized effects of food satiation in reducing rumination. Res Dev Disabil 11(1):23–36CrossRefPubMedGoogle Scholar
  8. Cotán D, Cordero MD, Garrido-Maraver J, Oropesa-Ávila M, Rodríguez-Hernández A, Gómez Izquierdo L, De la Mata M, De Miguel M, Lorite JB, Infante ER, Jackson S, Navas P, Sánchez-Alcázar JA (2011) Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J 25(8):2669–2687CrossRefPubMedGoogle Scholar
  9. Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, Pinton P (2017) Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim Biophys Acta 1858(8):615–627. pii: S0005-2728(17)30004-X.  https://doi.org/10.1016/j.bbabio.2017.01.003 CrossRefPubMedGoogle Scholar
  10. De la Mata M, Garrido-Maraver J, Cotán D, Cordero MD, Oropesa-Ávila M, Izquierdo LG, De Miguel M, Lorite JB, Infante ER, Ybot P, Jackson S, Sánchez-Alcázar JA (2012) Recovery of MERRF fibroblasts and cybrids pathophysiology by coenzyme Q10. Neurotherapeutics 9(2):446–463CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Paepe B, Vandemeulebroecke K, Smet J, Vanlander A, Seneca S, Lissens W, Van Hove JL, Deschepper E, Briones P, Van Coster R (2014) Effect of resveratrol on cultured skin fibroblasts from patients with oxidative phosphorylation defects. Phytother Res 28(2):312–316CrossRefPubMedGoogle Scholar
  12. Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, De Smedt H, Bultynck G, Parys JB (2013) mTOR-Controlled Autophagy Requires Intracellular Ca2+. Signaling. PLoS One 8(4):e61020CrossRefPubMedPubMedCentralGoogle Scholar
  13. Distelmaier F, Visch HJ, Smeitink JA, Mayatepek E, Koopman WJ, Willems PH (2009) The antioxidant Trolox restores mitochondrial membrane potential and Ca2+ −stimulated ATP production in human complex I deficiency. J Mol Med 87(5):515–522CrossRefPubMedPubMedCentralGoogle Scholar
  14. Düzgün ŞA, Yerlikaya A, Zeren S, Bayhan Z, Okur E, Boyacı İ (2017) Differential effects of p38 MAP kinase inhibitors SB203580 and SB202190 on growth and migration of human MDA-MB-231 cancer cell line. Cytotechnology 69(4):711–724.  https://doi.org/10.1007/s10616-017-0079-2 CrossRefPubMedGoogle Scholar
  15. Ehinger JK, Piel S, Ford R, Karlsson M, Sjövall F, Frostner EÅ, Morota S, Taylor RW, Turnbull DM, Cornell C, Moss SJ, Metzsch C, Hansson MJ, Fliri H, Elmér E (2016) Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun 7:12317CrossRefPubMedPubMedCentralGoogle Scholar
  16. Farrukh MR, Nissar UA, Afnan Q, Rafiq RA, Sharma L, Amin S, Kaiser P, Sharma PR, Tasduq SA (2014) Oxidative stress mediated Ca(2+) release manifests endoplasmic reticulum stress leading to unfolded protein response in UV-B irradiated human skin cells. J Dermatol Sci 75(1):24–35CrossRefPubMedGoogle Scholar
  17. Farrukh MR, Nissar UA, Kaiser PJ, Afnan Q, Sharma PR, Bhushan S, Tasduq SA (2015) Glycyrrhizic acid (GA) inhibits reactive oxygen Species mediated photodamage by blocking ER stress and MAPK pathway in UV-B irradiated human skin fibroblasts. J Photochem Photobiol B 148:351–357CrossRefPubMedGoogle Scholar
  18. Ferrari R, Balla C, Malagù M, Guardigli G, Morciano G, Bertini M, Biscaglia S, Campo G (2017) Reperfusion damage–a story of success, failure, and hope. Circ J 81(2):131–141CrossRefPubMedGoogle Scholar
  19. Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, Annese T, Di Paola M, Dell'aquila C, De Mari M, Ferranini E, Bonifati V, Pacelli C, Cocco T (2014) Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease. Biochim Biophys Acta 1842(7):902–915CrossRefPubMedGoogle Scholar
  20. Gallego-Villar L, Pérez-Cerdá C, Pérez B, Abia D, Ugarte M, Richard E, Desviat LR (2013) Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia. J Inherit Metab Dis 36(5):731–740CrossRefPubMedGoogle Scholar
  21. Gallego-Villar L, Pérez B, Ugarte M, Desviat LR, Richard E (2014) Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun 452(3):457–461CrossRefPubMedGoogle Scholar
  22. Garrido-Maraver J, Cordero MD, Moñino ID, Pereira-Arenas S, Lechuga-Vieco AV, Cotán D, De la Mata M, Oropesa-Ávila M, De Miguel M, Bautista Lorite J, Rivas Infante E, Alvarez-Dolado M, Navas P, Jackson S, Francisci S, Sánchez-Alcázar JA (2012) Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease. Br J Pharmacol 167(6):1311–1328CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gerards M, van den Bosch BJ, Danhauser K, Serre V, van Weeghel M, Wanders RJ, Nicolaes GA, Sluiter W, Schoonderwoerd K, Scholte HR, Prokisch H, Rötig A, de Coo IF, Smeets HJ (2011) Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 134(Pt 1):210–219CrossRefPubMedGoogle Scholar
  24. Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P (2010a) Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 13(7):1051–85Google Scholar
  25. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010b) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330(6008):1247–1251Google Scholar
  26. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di Virgilio F, Zito E, Pandolfi PP, Wieckowski MR, Mammano F, Del Sal G, Pinton P (2015a) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci U S A 112(6):1779–1784Google Scholar
  27. Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P (2015b) Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 22(12):995-1019Google Scholar
  28. Gledhill JR, Montgomery MG, Leslie AG, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 104(34):13632–13637CrossRefPubMedPubMedCentralGoogle Scholar
  29. Golubitzky A, Dan P, Weissman S, Link G, Wikstrom JD, Saada A (2011) Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS One 6(10):e26883CrossRefPubMedPubMedCentralGoogle Scholar
  30. Granatiero V, Giorgio V, Calì T, Patron M, Brini M, Bernardi P, Tiranti V, Zeviani M, Pallafacchina G, De Stefani D, Rizzuto R (2016) Reduced mitochondrial Ca(2+) transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase. Cell Death Differ 23(2):231–241CrossRefPubMedGoogle Scholar
  31. Gueven N, Nadikudi M, Daniel A, Chhetri J (2016) Targeting mitochondrial function to treat optic neuropathy. Mitochondrion S1567-7249(16):30115–30115.  https://doi.org/10.1016/j.mito.2016.07.013 Google Scholar
  32. Haas RH (2007) The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion 7(Suppl):S136–S145CrossRefPubMedGoogle Scholar
  33. Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier Fruh I, Anklin C, Dallmann R, Gueven N (2011) NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One 6(3):e17963CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hirano M, Garone C, Quinzii CM (2012) CoQ(10) deficiencies and MNGIE: two treatable mitochondrial disorders. Biochim Biophys Acta 1820(5):625–631CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hirashima N, Etcheberrigaray R, Bergamaschi S, Racchi M, Battaini F, Binetti G, Govoni S, Alkon DL (1996) Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer's disease. Neurobiol Aging 17(4):549–555CrossRefPubMedGoogle Scholar
  36. Ido Y, Duranton A, Lan F, Weikel KA, Breton L, Ruderman NB (2015) Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes. PLoS One 10(2):e0115341CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jauslin ML, Wirth T, Meier T, Schoumacher F (2002) A cellular model for Friedreich Ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy. Hum Mol Genet 11(24):3055–3063CrossRefPubMedGoogle Scholar
  38. Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17(13):1972–1974CrossRefPubMedGoogle Scholar
  39. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96(24):13807–13812CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kanabus M, Heales SJ, Rahman S (2014) Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol 171(8):1798–1817CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kanabus M, Fassone E, Hughes SD, Bilooei SF, Rutherford T, Donnell MO, Heales SJ, Rahman S (2016) The pleiotropic effects of decanoic acid treatment on mitochondrial function in fibroblasts from patients with complex I deficient Leigh syndrome. J Inherit Metab Dis 39(3):415–426CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kasai T, Togashi T, Morishima T (2000) Encephalopathy associated with influenza epidemics. Lancet 355(9214):1558–1559CrossRefPubMedGoogle Scholar
  43. Kaufman RJ, Malhotra JD (2014) Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta 1843(10):2233–2239CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kemp JP, Smith PM, Pyle A, Neeve VC, Tuppen HA, Schara U, Talim B, Topaloglu H, Holinski-Feder E, Abicht A, Czermin B, Lochmüller H, McFarland R, Chinnery PF, Chrzanowska-Lightowlers ZM, Lightowlers RN, Taylor RW, Horvath R (2011) Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain 134(Pt 1):183–195CrossRefPubMedGoogle Scholar
  45. Kim CY, Lee HJ, Chae MK, Byun JW, Lee EJ, Yoon JS (2015) Therapeutic effect of resveratrol on oxidative stress in graves’ orbitopathy orbital fibroblasts. Invest Ophthalmol Vis Sci 56(11):6352–6361CrossRefPubMedGoogle Scholar
  46. Koopman WJ, Verkaart S, van Emst-de Vries SE, Grefte S, Smeitink JA, Nijtmans LG, Willems PH (2008) Mitigation of NADH: ubiquinone oxidoreductase deficiency by chronic Trolox treatment. Biochim Biophys Acta 1777(7–8):853–859CrossRefPubMedGoogle Scholar
  47. Koopman WJ, Beyrath J, Fung CW, Koene S, Rodenburg RJ, Willems PH, Smeitink JA (2016) Mitochondrial disorders in children: toward development of small-molecule treatment strategies. EMBO Mol Med 8(4):311–327CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lake NJ, Bird MJ, Isohanni P, Paetau A (2015) Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol 74(6):482–492CrossRefPubMedGoogle Scholar
  49. Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Suski JM, Szabadkai G, Wilczynski G, Wlodarczyk J, Diogo CV, Oliveira PJ, Tauber J, Ježek P, Pronicki M, Duszynski J, Pinton P, Wieckowski MR (2013) Disrupted ATP synthase activity and mitochondrial hyperpolarisation-dependent oxidative stress is associated with p66Shc phosphorylation in fibroblasts of NARP patients. Int J Biochem Cell Biol 45(1):141–150CrossRefPubMedGoogle Scholar
  50. Lim CK, Kalinowski DS, Richardson DR (2008) Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class. Mol Pharmacol 74(1):225–235CrossRefPubMedGoogle Scholar
  51. Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL, Chuang SF (2014) Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 53:141–146CrossRefPubMedGoogle Scholar
  52. Lopes Costa A, Le Bachelier C, Mathieu L, Rotig A, Boneh A, De Lonlay P, Tarnopolsky MA, Thorburn DR, Bastin J, Djouadi F (2014) Beneficial effects of resveratrol on respiratory chain defects in patients’ fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Hum Mol Genet 23(8):2106–2119CrossRefPubMedGoogle Scholar
  53. López LC, Quinzii CM, Area E, Naini A, Rahman S, Schuelke M, Salviati L, Dimauro S, Hirano M (2010) Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 5(7):e11897CrossRefPubMedPubMedCentralGoogle Scholar
  54. Marchi S, Bonora M, Patergnani S, Giorgi C, Pinton P (2017) Methods to assess mitochondrial morphology in mammalian cells mounting autophagic or mitophagic responses. Methods Enzymol 588:171–186CrossRefPubMedGoogle Scholar
  55. Mathieu L, Costa AL, Le Bachelier C, Slama A, Lebre AS, Taylor RW, Bastin J, Djouadi F (2016) Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radic Biol Med 96:190–198CrossRefPubMedGoogle Scholar
  56. Mattiazzi M, Vijayvergiya C, Gajewski CD, DeVivo DC, Lenaz G, Wiedmann M, Manfredi G (2004) The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum Mol Genet 13(8):869–879CrossRefPubMedGoogle Scholar
  57. Menzies KJ, Robinson BH, Hood DA (2009) Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol 296(2):C355–C362CrossRefPubMedGoogle Scholar
  58. Morató L, Galino J, Ruiz M, Calingasan NY, Starkov AA, Dumont M, Naudí A, Martínez JJ, Aubourg P, Portero-Otín M, Pamplona R, Galea E, Beal MF, Ferrer I, Fourcade S, Pujol A (2013) Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain 136(Pt 8):2432–2443CrossRefPubMedPubMedCentralGoogle Scholar
  59. Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R, Wieckowski MR, Campo G, Pinton P (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78:142–153CrossRefPubMedGoogle Scholar
  60. Moreira PI, Harris PL, Zhu X, Santos MS, Oliveira CR, Smith MA, Perry G (2007) Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimers Dis 12(2):195–206CrossRefPubMedGoogle Scholar
  61. Patergnani S, Marchi S, Rimessi A, Bonora M, Giorgi C, Mehta KD, Pinton P (2013) PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy 9(9):1367–1385CrossRefPubMedGoogle Scholar
  62. Patergnani S, Baldassari F, De Marchi E, Karkucinska-Wieckowska A, Wieckowski MR, Pinton P (2014) Methods to monitor and compare mitochondrial and glycolytic ATP production. Methods Enzymol 542:313–332CrossRefPubMedGoogle Scholar
  63. Pinton P, Leo S, Wieckowski MR, Di Benedetto G, Rizzuto R (2004) Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. J Cell Biol 165(2):223–32Google Scholar
  64. Rahman S (2015) Emerging aspects of treatment in mitochondrial disorders. J Inherit Metab Dis 38(4):641–653CrossRefPubMedGoogle Scholar
  65. Rai PK, Russell OM, Lightowlers RN, Turnbull DM (2015) Potential compounds for the treatment of mitochondrial disease. Br Med Bull 116:5–18PubMedGoogle Scholar
  66. Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I (2014) Antioxidants and human diseases. Clin Chim Acta 436:332–347CrossRefPubMedGoogle Scholar
  67. Saada A (2011) The use of individual patient’s fibroblasts in the search for personalized treatment of nuclear encoded OXPHOS diseases. Mol Genet Metab 104(1–2):39–47CrossRefPubMedGoogle Scholar
  68. Saada A (2014) Mitochondria: mitochondrial OXPHOS (dys) function ex vivo–the use of primary fibroblasts. Int J Biochem Cell Biol 48:60–65CrossRefPubMedGoogle Scholar
  69. Salviati L, Hernandez-Rosa E, Walker WF, Sacconi S, DiMauro S, Schon EA, Davidson MM (2002) Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations. Biochem J 363(Pt 2):321–327CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sbano L, Bonora M, Marchi S, Baldassari F, Medina DL, Ballabio A, Giorgi C, Pinton P (2017) TFEB-mediated increase in peripheral lysosomes regulates store-operated calcium entry. Sci Rep 7:40797CrossRefPubMedPubMedCentralGoogle Scholar
  71. Scarpelli M, Todeschini A, Rinaldi F, Rota S, Padovani A, Filosto M (2014) Strategies for treating mitochondrial disorders: an update. Mol Genet Metab 113(4):253–260CrossRefPubMedGoogle Scholar
  72. Schmunk G, Boubion BJ, Smith IF, Parker I, Gargus JJ (2015) Shared functional defect in IP3R-mediated calcium signaling in diverse monogenic autism syndromes. Transl Psychiatry 5:e643CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schmunk G, Nguyen RL, Ferguson DL, Kumar K, Parker I, Gargus JJ (2017) High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder. Sci Rep 7:40740CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sgarbi G, Casalena GA, Baracca A, Lenaz G, DiMauro S, Solaini G (2009) Human NARP mitochondrial mutation metabolism corrected with alpha-ketoglutarate/aspartate: a potential new therapy. Arch Neurol 66(8):951–957CrossRefPubMedGoogle Scholar
  75. Singh DK, Kumar D, Siddiqui Z, Basu SK, Kumar V, Rao KV (2005) The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121(2):281–293CrossRefPubMedGoogle Scholar
  76. Smith RA, Murphy MP (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201:96–103CrossRefPubMedGoogle Scholar
  77. Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010:737385CrossRefPubMedPubMedCentralGoogle Scholar
  78. Soiferman D, Ayalon O, Weissman S, Saada A (2014) The effect of small molecules on nuclear-encoded translation diseases. Biochimie 100:184–191CrossRefPubMedGoogle Scholar
  79. Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 32(2):143–158CrossRefPubMedGoogle Scholar
  80. Vay L, Hernández-Sanmiguel E, Santo-Domingo J, Lobatón CD, Moreno A, Montero M, Alvarez J (2007) Modulation of Ca(2+) release and Ca(2+) oscillations in HeLa cells and fibroblasts by mitochondrial Ca(2+) uniporter stimulation. J Physiol Lond 580(Pt 1):39–49CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vazquez-Memije ME, Shanske S, Santorelli FM, Kranz-Eble P, Davidson E, DeVivo DC, DiMauro S (1996) Comparative biochemical studies in fibroblasts from patients with different forms of Leigh syndrome. J Inherit Metab Dis 19(1):43–50CrossRefPubMedGoogle Scholar
  82. Visch HJ, Rutter GA, Koopman WJ, Koenderink JB, Verkaart S, de Groot T, Varadi A, Mitchell KJ, van den Heuvel LP, Smeitink JA, Willems PH (2004) Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem 279(39):40328–40336CrossRefPubMedGoogle Scholar
  83. Voets AM, Lindsey PJ, Vanherle SJ, Timmer ED, Esseling JJ, Koopman WJ, Willems PH, Schoonderwoerd GC, De Groote D, Poll-The BT, de Coo IF, Smeets HJ (2012) Patient-derived fibroblasts indicate oxidative stress status and may justify antioxidant therapy in OXPHOS disorders. Biochim Biophys Acta 1817(11):1971–1978CrossRefPubMedGoogle Scholar
  84. Wang H, Lemire BD, Cass CE, Weiner JH, Michalak M, Penn AM, Fliegel L (1996) Zidovudine and dideoxynucleosides deplete wild-type mitochondrial DNA levels and increase deleted mitochondrial DNA levels in cultured Kearns-Sayre syndrome fibroblasts. Biochim Biophys Acta 1316(1):51–59CrossRefPubMedGoogle Scholar
  85. White SL, Collins VR, Wolfe R, Cleary MA, Shanske S, DiMauro S, Dahl HH, Thorburn DR (1999) Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am J Hum Genet 65(2):474–482CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wojewoda M, Duszyński J, Szczepanowska J (2011) NARP mutation and mtDNA depletion trigger mitochondrial biogenesis which can be modulated by selenite supplementation. Int J Biochem Cell Biol 43(8):1178–1186CrossRefPubMedGoogle Scholar
  87. Wu SB, Ma YS, Wu YT, Chen YC, Wei YH (2010) Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol 41(2–3):256–266CrossRefPubMedGoogle Scholar
  88. Wu YT, Wu SB, Wei YH (2014) Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases. Curr Pharm Des 20(35):5510–5526CrossRefPubMedGoogle Scholar
  89. Yamaguchi S, Li H, Purevsuren J, Yamada K, Furui M, Takahashi T, Mushimoto Y, Kobayashi H, Hasegawa Y, Taketani T, Fukao T, Fukuda S (2012) Bezafibrate can be a new treatment option for mitochondrial fatty acid oxidation disorders: evaluation by in vitro probe acylcarnitine assay. Mol Genet Metab 107(1–2):87–91CrossRefPubMedGoogle Scholar
  90. Yao M, Yao D, Yamaguchi M, Chida J, Yao D, Kido H (2011) Bezafibrate upregulates carnitine palmitoyltransferase II expression and promotes mitochondrial energy crisis dissipation in fibroblasts of patients with influenza-associated encephalopathy. Mol Genet Metab 104(3):265–272CrossRefPubMedGoogle Scholar
  91. Yu-Wai-Man P, Soiferman D, Moore DG, Burté F, Saada A (2017) Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion S1567-7249(17):30012–30010.  https://doi.org/10.1016/j.mito.2017.01.004 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mariusz R. Wieckowski
    • 1
  • Alberto Danese
    • 2
    • 3
  • Giampaolo Morciano
    • 2
  • Maciej Pronicki
    • 4
  • Jerzy Duszynski
    • 1
  • Paolo Pinton
    • 2
    • 3
  • Agnieszka Karkucinska-Wieckowska
    • 4
  1. 1.Department of BiochemistryNencki Institute of Experimental BiologyWarsawPoland
  2. 2.Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
  3. 3.Maria Cecilia Hospital, GVM Care & ResearchE.S: Health Science FoundationCotignolaItaly
  4. 4.Department of PathologyThe Children’s Memorial Health InstituteWarsawPoland

Personalised recommendations