Application of Cluster Analysis in Making Decision About Purchase of Additional Materials for Welding Process

  • Agnieszka Kujawińska
  • Michał RogalewiczEmail author
  • Marcin Muchowski
  • Magdalena Stańkowska
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 213)


The concept of Industry 4.0 requires a computerized manufacturing environment which permits to increase flexibility of processes, faster communication and integration of various areas of business operation. It also involves collecting and processing a lot of information in databases. In order for an enterprise to develop, it must be able to transform this data into useful knowledge. Extraction of knowledge from datasets is made possible by Data Mining methods. The paper presents an analysis of the use of Data Mining methods in support of purchases of manufacturing materials. The practical problem of selection of fluxing agents for Submerged Arc Welding (SAW) is solved by applying cluster analysis. The authors present the results of an analysis for 213 combinations of flux-welding wire, conducted by the hierarchical (Ward method) and non-hierarchical (generalized k-means method) cluster methods. The approach proves to be suitable for aiding the decision making process.


Data mining Cluster analysis Generalized k-means method Ward method Welding process 



The presented results derive from a scientific statutory research conducted by Chair of Management and Production Engineering, Faculty of Mechanical Engineering and Management, Poznan University of Technology, Poland, supported by the Polish Ministry of Science and Higher Education from the financial means in 2017.


  1. 1.
    Hamrol, A.: Intelligent components for quality control in manufacturing. In: Proceedings of 3rd IFAC Symposium on Intelligent Components and Instruments for Control Applications, pp. 613–618 (1997)Google Scholar
  2. 2.
    Trojanowska, J., Varela, M.L.R., Machado, J.: The tool supporting decision making process in area of job-shop scheduling. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 571, pp. 490–498. Springer, Cham (2017). CrossRefGoogle Scholar
  3. 3.
    Górski, F., Buń, P., Wichniarek, R., Zawadzki, P., Hamrol, A.: Immersive city bus configuration system for marketing and sales education. Proc. Comp. Sc. 75, 137–146 (2015)CrossRefGoogle Scholar
  4. 4.
    Pandilov, Z., Milecki, A., Nowak, A., Górski, F., Grajewski, D., Ciglar, D., Mulc, T., Klaić, M.: Virtual modelling and simulation of a CNC machine feed drive system. Trans. of FAMENA 39(4), 37–54 (2016)Google Scholar
  5. 5.
    Grajewski, D., Diakun, J., Wichniarek, R., Dostatni, E., Buń, P., Górski, F., Karwasz, A.: Improving the skills and knowledge of future designers in the field of ecodesign using virtual reality technologies. Proc. Comp. Sc. 75, 348–358 (2015)CrossRefGoogle Scholar
  6. 6.
    Zawadzki, P., Górski, F., Hamrol, A., Kowalski, M., Paszkiewicz, R.: An automatic system for 3D models and technology process design. Trans. FAMENA 35(2), 69–78 (2011)Google Scholar
  7. 7.
    Schuh, G., Potente, T., Varandani, R., Schmitz, T.: Global footprint design based on genetic algorithms – an “Industry 4.0” perspective. CIRP Ann. Man. Tech. 63(1), 433–436 (2014). CIRP ProcediaGoogle Scholar
  8. 8.
    Zawadzki, P., Żywicki, K.: Smart product design and production control for effective mass customization in the Industry 4.0 concept. Manag. Prod. Eng. Rev. 7(3), 105–112 (2016)Google Scholar
  9. 9.
    Chen, F., Deng, P., Wan, J., Zhang, D.: Data mining review for the internet of things: literature review and challenges. Int. J. Dis. Sen. Net. (2015). Art. ID 431014, 14 pagesGoogle Scholar
  10. 10.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Series in Data Management Systems. Elsevier (2012)Google Scholar
  11. 11.
    Więcek-Janka, E., Mierzwiak, R., Kijewska, J.: Taxonomic approach to competencies in the succession process of family firms with the use of grey clustering analysis. In: Liu, S., Yang, Y., Mi, C. (eds.) IEEE International Conference on Grey System and Intelligent Services, Leicester, UK, pp. 432–438 (2015)Google Scholar
  12. 12.
    Lewandowska, A., Więcek-Janka, E.: European version of a balanced scorecard in family enterprises. In: Xu, Y., Zhao, S., Xie, H. (eds.) Proceedings of the 2016 International Conference on Management Science and Management Innovation, AEBMR-Advances in Economics Business and Management Research, vol. 10, pp. 219–223 (2016)Google Scholar
  13. 13.
    Diering, M., Dyczkowski, K., Hamrol, A.: New Method for assessment of raters agreement based on fuzzy similarity. In: Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds.) 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol. 368, pp. 415–425. Springer, Cham (2015).
  14. 14.
    Diering, M., Dyczkowski, K.: Assessing the raters agreement in the diagnostic catheter tube connector production process using novel fuzzy similarity coefficient. In: International Conference on Industrial Engineering and Engineering Management, vol. 2016, pp. 228–232. IEEE (2016)Google Scholar
  15. 15.
    Jahan, A., Ismail, M.Y., Sapuan, S.M., Mustapha, F.: Material screening and choosing methods – a review. Mat. Des. 31(2), 696–705 (2010)Google Scholar
  16. 16.
    Grudzień, Ł., Hamrol, A.: Information quality in design process documentation of quality management systems. Int. J. Inf. Manag. 36(4), 599–606 (2016)CrossRefGoogle Scholar
  17. 17.
    Roth, R., Field, F., Clark, J.: Materials selection and multi-attribute utility analysis. J. Comp.-Aid. Comp. Des. 1, 325–342 (1993)Google Scholar
  18. 18.
    Gal, T., Stewart, T.J., Hanne, T. (eds.): Multicriteria Decision Making: Advances in MDCM Models, Algorithms, Theory and Applications, vol. 21. Springer Science and Business Media, New York (2013)Google Scholar
  19. 19.
    Linnert, G.E.: Welding Metallurgy, vol. 1. American Welding Society, Miami (1997)Google Scholar
  20. 20.
    ESAB manufacturer webpage. Accessed 08 Feb 2017
  21. 21.
    Dostatni, E., Diakun, J., Hamrol, A., Mazur, W.: Application of agent technology for recycling-oriented product assessment. Ind. Manag. Data Sys. 113(6), 817–839 (2013)CrossRefGoogle Scholar
  22. 22.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier, New York (2001)zbMATHGoogle Scholar
  23. 23.
    Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  24. 24.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comp. Surv. (CSUR) 31(3), 264–323 (1999)CrossRefGoogle Scholar
  25. 25.
    Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interd. Rev. Data Min. Knowl. Disc. 2(1), 86–97 (2012)Google Scholar
  26. 26.
    Trebuňa, P., Halčinová, J.: Mathematical tools of cluster analysis. Appl. Math. 4(5), 814–816 (2013)CrossRefGoogle Scholar
  27. 27.
    Aggarwal, C.C., Reddy, C.K. (Eds.): Data Clustering: Algorithms and Applications. CRC Press, Boca Raton (2013)Google Scholar
  28. 28.
    Hill, T., Lewicki, P.: Statistics: Methods and Applications. StatSoft Inc., Tulsa (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.Poznań University of TechnologyPoznańPoland

Personalised recommendations