Pathophysiology of Thrombotic Thrombocytopenic Purpura

  • Sarah E. SartainEmail author


Thrombotic thrombocytopenic purpura (TTP) is a disorder characterized by microangiopathic hemolytic anemia (MAHA), thrombocytopenia, microvascular endothelial injury and thrombosis, as well as end-organ damage particularly of the central nervous system, kidneys, heart, and gastrointestinal tract. The pathogenesis of the disorder is secondary to deficiencies in ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), which is responsible for cleaving large multimers of von Willebrand factor (VWF). VWF normally functions to initiate formation of the platelet plug in primary hemostasis. In TTP, absence or deficiency of ADAMTS13 leads to persistence of ultra-large VWF (ULVWF) multimers with subsequent ULVWF-platelet adhesion and development of systemic microvascular thrombosis. Thrombocytopenia is secondary to platelet consumption in the formation of systemic microthrombi; MAHA and schistocytosis develop as a result of mechanical fragmentation as the red blood cells cross these platelet thrombi. Microvascular endothelial injury in TTP is well described, but the pathophysiologic mechanisms for this injury are not well characterized. Proposed mechanisms include direct injury by platelet-VWF thrombi, anti-endothelial cell antibodies, nitric oxide, oxidative stress, and neutrophil activation, as well as activation of the Fas pathway leading to endothelial cell apoptosis. Endothelial injury and thrombosis of the small vessels lead to impaired organ perfusion, further resulting in multi-organ failure, accounting for the significant morbidity and mortality observed in TTP. Severe ADAMTS13 deficiency is caused by congenital ADAMTS13 gene mutations or by acquired production of polyclonal autoantibodies directed against the metalloprotease. Autoantibody development in TTP can be triggered by infections or, more often, occur in the setting of other autoimmune phenomena. Other etiologies of acquired TTP include sepsis, liver disease, pancreatitis, pregnancy, HIV, cancer, organ transplant, and drugs. More recently, both in vitro and in vivo evidence have pointed toward over-activation of the alternative complement pathway, part of the innate immune system, in TTP, suggesting an additional immune mechanism in the pathogenesis of the disorder.


Ultra-large von Willebrand factor (VWF) ADAMTS13 Anti-ADAMTS13 antibodies Microvascular endothelium Microvascular thrombosis Alternative complement pathway 


  1. 1.
    Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87:4223–34.Google Scholar
  2. 2.
    Furlan M, Robles R, Galbusera M, Remuzzi G, Kyrle PA, Brenner B, et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339:1578–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87:4235–44.Google Scholar
  4. 4.
    Jaffe EA, Hoyer LW, Nachman RL. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest. 1973;52:2757–64.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jaffe EA, Hoyer LW, Nachman RL. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci U S A. 1974;71:1906–9.CrossRefGoogle Scholar
  6. 6.
    Nachman R, Levine R, Jaffe EA. Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest. 1977;60:914–21.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wagner DD, Olmsted JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol. 1982;95:355–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Cramer EM, Meyer D, le Menn R, Breton-Gorius J. Eccentric localization of von Willebrand factor in an internal structure of platelet alpha-granule resembling that of Weibel-Palade bodies. Blood. 1985;66:710–3.Google Scholar
  9. 9.
    Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104:100–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Rickles FR, Hoyer LW, Rick ME, Ahr DJ. The effects of epinephrine infusion in patients with von Willebrand’s disease. J Clin Invest. 1976;57:1618–25.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Harrison RL, McKee PA. Estrogen stimulates von Willebrand factor production by cultured endothelial cells. Blood. 1984;63:657–64.Google Scholar
  12. 12.
    Hamilton KK, Sims PJ. Changes in cytosolic Ca2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. Study of microcarrier cell monolayers using the fluorescent probe indo-1. J Clin Invest. 1987;79:600–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Levine JD, Harlan JM, Harker LA, Joseph ML, Counts RB. Thrombin-mediated release of factor VIII antigen from human umbilical vein endothelial cells in culture. Blood. 1982;60:531–4.Google Scholar
  14. 14.
    Loesberg C, Gonsalves MD, Zandbergen J, Willems C, van Aken WG, Stel HV, et al. The effect of calcium on the secretion of factor VIII-related antigen by cultured human endothelial cells. Biochim Biophys Acta. 1983;763:160–8.CrossRefGoogle Scholar
  15. 15.
    Ribes JA, Francis CW, Wagner DD. Fibrin induces release of von Willebrand factor from endothelial cells. J Clin Invest. 1987;79:117–23.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Shelton-Inloes BB, Titani K, Sadler JE. cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry. 1986;25:3164–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Shelton-Inloes BB, Broze GJ, Miletich JP, Sadler JE. Evolution of human von Willebrand factor: cDNA sequence polymorphisms, repeated domains, and relationship to von Willebrand antigen II. Biochem Biophys Res Commun. 1987;144:657–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Verweij CL, Diergaarde PJ, Hart M, Pannekoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J. 1986;5:1839–47.Google Scholar
  19. 19.
    Cruz MA, Yuan H, Lee JR, Wise RJ, Handin RI. Interaction of the von Willebrand factor (vWF) with collagen localization of the primary collagen-binding site by analysis of recombinant vWF A domain polypeptides. J Biol Chem. 1995;270:19668.PubMedCrossRefGoogle Scholar
  20. 20.
    Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem. 1987;262:8443–6.Google Scholar
  21. 21.
    Jenkins PV, Pasi KJ, Perkins SJ. Molecular modeling of ligand and mutation sites of the type A domains of human von Willebrand factor and their relevance to von Willebrand’s disease. Blood. 1998;91:2032–44.Google Scholar
  22. 22.
    Sugimoto M, Mohri H, McClintock RA, Ruggeri ZM. Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin. A model for the regulation of von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem. 1991;266:18172–8.Google Scholar
  23. 23.
    Zhou YF, Eng ET, Zhu J, Lu C, Walz T, Springer TA. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120:449–58.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ruggeri ZM, Ware J. von Willebrand factor. FASEB J. 1993;7:308–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Arya M, Anvari B, Romo GM, Cruz MA, Dong JF, LV MI, et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood. 2002;99:3971–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424.PubMedCrossRefGoogle Scholar
  27. 27.
    Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 1996;88:2939–50.Google Scholar
  28. 28.
    Miura S, Li CQ, Cao Z, Wang H, Wardell MR, Sadler JE. Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ibalpha-(1-289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J Biol Chem. 2000;275:7539–46.Google Scholar
  29. 29.
    Ruggeri ZM. Developing basic and clinical research on von Willebrand factor and von Willebrand disease. Thromb Haemost. 2000;84:147–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Savage B, Shattil SJ, Ruggeri ZM. Modulation of platelet function through adhesion receptors. A dual role for glycoprotein IIb-IIIa (integrin alpha IIb beta 3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J Biol Chem. 1992;267:11300–6.Google Scholar
  31. 31.
    Brinkhous KM, Sandberg H, Garris JB, Mattsson C, Palm M, Griggs T, et al. Purified human factor VIII procoagulant protein: comparative hemostatic response after infusions into hemophilic and von Willebrand disease dogs. Proc Natl Acad Sci U S A. 1985;82:8752–6.CrossRefGoogle Scholar
  32. 32.
    Fay PJ, Coumans JV, Walker FJ. von Willebrand factor mediates protection of factor VIII from activated protein C-catalyzed inactivation. J Biol Chem. 1991;266:2172–7.Google Scholar
  33. 33.
    Koedam JA, Meijers JC, Sixma JJ, Bouma BN. Inactivation of human factor VIII by activated protein C. Cofactor activity of protein S and protective effect of von Willebrand factor. J Clin Invest. 1988;82:1236–43.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Koppelman SJ, van Hoeij M, Vink T, Lankhof H, Schiphorst ME, Damas C, et al. Requirements of von Willebrand factor to protect factor VIII from inactivation by activated protein C. Blood. 1996;87:2292–300.Google Scholar
  35. 35.
    Turner NA, Moake JL. Factor VIII is synthesized in human endothelial cells, packaged in Weibel-Palade bodies and secreted bound to ULVWF strings. PLoS One. 2015;10:e0140740.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Suzuki M, Murata M, Matsubara Y, Uchida T, Ishihara H, Shibano T, et al. Detection of von Willebrand factor-cleaving protease (ADAMTS-13) in human platelets. Biochem Biophys Res Commun. 2004;313:212–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Turner N, Nolasco L, Tao Z, Dong JF, Moake J. Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost. 2006;4:1396–404.PubMedCrossRefGoogle Scholar
  38. 38.
    Uemura M, Tatsumi K, Matsumoto M, Fujimoto M, Matsuyama T, Ishikawa M, et al. Localization of ADAMTS13 to the stellate cells of human liver. Blood. 2005;106:922–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou W, Inada M, Lee TP, Benten D, Lyubsky S, Bouhassira EE, et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Investig. 2005;85:780–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Crawley JT, de Groot R, Xiang Y, Luken BM, Lane DA. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood. 2011;118:3212–21.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood. 1994;83:2171–9.Google Scholar
  42. 42.
    Nolasco L, Nolasco J, Feng S, Afshar-Kharghan V, Moake J. Human complement factor H is a reductase for large soluble von Willebrand factor multimers—brief report. Arterioscler Thromb Vasc Biol. 2013;33:2524–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Turner N, Nolasco L, Moake J. Generation and breakdown of soluble ultralarge von Willebrand factor multimers. Semin Thromb Hemost. 2012;38:38–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Dong JF, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 2002;100:4033–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Levy GG, Nichols WC, Lian EC, Foroud T, JN MC, BM MG, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413:488–94.Google Scholar
  46. 46.
    Furlan M, Robles R, Solenthaler M, Lämmle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood. 1998;91:2839–46.Google Scholar
  47. 47.
    Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339:1585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lammle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood. 1997;89:3097–103.Google Scholar
  49. 49.
    George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:1847–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Burns ER, Zucker-Franklin D. Pathologic effects of plasma from patients with thrombotic thrombocytopenic purpura on platelets and cultured vascular endothelial cells. Blood. 1982;60:1030–7.PubMedGoogle Scholar
  51. 51.
    Gore I. Disseminated arteriolar and capillary platelet thrombosis; a morphologic study of its histogenesis. Am J Pathol. 1950;26:155–75, incl 4 pl.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Wada H, Kaneko T, Ohiwa M, Tanigawa M, Hayashi T, Tamaki S, et al. Increased levels of vascular endothelial cell markers in thrombotic thrombocytopenic purpura. Am J Hematol. 1993;44:101–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Mori Y, Wada H, Okugawa Y, Tamaki S, Nakasaki T, Watanabe R, et al. Increased plasma thrombomodulin as a vascular endothelial cell marker in patients with thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Clin Appl Thromb Hemost. 2001;7:5–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Jimenez JJ, Jy W, Mauro LM, Horstman LL, Ahn YS. Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease. Br J Haematol. 2001;112:81–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Tandon NN, Rock G, Jamieson GA. Anti-CD36 antibodies in thrombotic thrombocytopenic purpura. Br J Haematol. 1994;88:816–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Praprotnik S, Blank M, Levy Y, Tavor S, Boffa MC, Weksler B, et al. Anti-endothelial cell antibodies from patients with thrombotic thrombocytopenic purpura specifically activate small vessel endothelial cells. Int Immunol. 2001;13:203–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Koenig DW, Barley-Maloney L, Daniel TO. A western blot assay detects autoantibodies to cryptic endothelial antigens in thrombotic microangiopathies. J Clin Immunol. 1993;13:204–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Wright JF, Wang H, Hornstein A, Hornstein A, Hogarth M, Mody M, et al. Characterization of platelet glycoproteins and platelet/endothelial cell antibodies in patients with thrombotic thrombocytopenic purpura. Br J Haematol. 1999;107:546–55.PubMedCrossRefGoogle Scholar
  59. 59.
    Noris M, Ruggenenti P, Todeschini M, Figliuzzi M, Macconi D, Zoja C, et al. Increased nitric oxide formation in recurrent thrombotic microangiopathies: a possible mediator of microvascular injury. Am J Kidney Dis. 1996;27:790–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Gangemi S, Allegra A, Sciarrone P, Russo S, Cristani M, Gerace D, et al. Effect of therapeutic plasma exchange on plasma levels of oxidative biomarkers in a patient with thrombotic thrombocytopenic purpura. Eur J Haematol. 2015;94:368–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Mikes B, Sinkovits G, Farkas P, Csuka D, Schlammadinger A, Rázsó K, et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res. 2014;133:616–21.Google Scholar
  62. 62.
    Mitra D, Jaffe EA, Weksler B, Hajjar KA, Soderland C, Laurence J. Thrombotic thrombocytopenic purpura and sporadic hemolytic-uremic syndrome plasmas induce apoptosis in restricted lineages of human microvascular endothelial cells. Blood. 1997;89:1224–34.PubMedGoogle Scholar
  63. 63.
    Dang CT, Magid MS, Weksler B, Chadburn A, Laurence J. Enhanced endothelial cell apoptosis in splenic tissues of patients with thrombotic thrombocytopenic purpura. Blood. 1999;93:1264–70.PubMedGoogle Scholar
  64. 64.
    Moake JL, Turner NA, Stathopoulos NA, Nolasco L, Hellums JD. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood. 1988;71:1366–74.PubMedGoogle Scholar
  65. 65.
    Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest. 1986;78:1456–61.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tsai HM. Pathophysiology of thrombotic thrombocytopenic purpura. Int J Hematol. 2010;91:1–19.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Asada Y, Sumiyoshi A, Hayashi T, Suzumiya J, Kaketani K. Immunohistochemistry of vascular lesion in thrombotic thrombocytopenic purpura, with special reference to factor VIII related antigen. Thromb Res. 1985;38:469–79.PubMedCrossRefGoogle Scholar
  68. 68.
    Hosler GA, Cusumano AM, Hutchins GM. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities. A review of 56 autopsy cases. Arch Pathol Lab Med. 2003;127:834–9.PubMedGoogle Scholar
  69. 69.
    George JN. Clinical practice. Thrombotic thrombocytopenic purpura. N Engl J Med. 2006;354:1927–35.PubMedCrossRefGoogle Scholar
  70. 70.
    George JN. How I treat patients with thrombotic thrombocytopenic purpura: 2010. Blood. 2010;116:4060–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sadler JE, Moake JL, Miyata T, George JN. Recent advances in thrombotic thrombocytopenic purpura. Hematol Am Soc Hematol Educ Prog. 2004;2004:407–23.Google Scholar
  72. 72.
    Remuzzi G. HUS and TTP: variable expression of a single entity. Kidney Int. 1987;32:292–308.PubMedCrossRefGoogle Scholar
  73. 73.
    Eknoyan G, Riggs SA. Renal involvement in patients with thrombotic thrombocytopenic purpura. Am J Nephrol. 1986;6:117–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Vesely SK, George JN, Lammle B, Studt JD, Alberio L, El-Harake MA, et al. ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients. Blood. 2003;102:60–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Zafrani L, Mariotte E, Darmon M, Canet E, Merceron S, Boutboul D, et al. Acute renal failure is prevalent in patients with thrombotic thrombocytopenic purpura associated with low plasma ADAMTS13 activity. J Thromb Haemost. 2015;13:380–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Hawkins BM, Abu-Fadel M, Vesely SK, George JN. Clinical cardiac involvement in thrombotic thrombocytopenic purpura: a systematic review. Transfusion. 2008;48:382–92.PubMedGoogle Scholar
  77. 77.
    Gami AS, Hayman SR, Grande JP, Garovic VD. Incidence and prognosis of acute heart failure in the thrombotic microangiopathies. Am J Med. 2005;118:544–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Patschan D, Witzke O, Duhrsen U, Erbel R, Philipp T, Herget-Rosenthal S. Acute myocardial infarction in thrombotic microangiopathies—clinical characteristics, risk factors and outcome. Nephrol Dial Transplant. 2006;21:1549–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Ridolfi RL, Hutchins GM, Bell WR. The heart and cardiac conduction system in thrombotic thrombocytopenic purpura. A clinicopathologic study of 17 autopsied patients. Ann Intern Med. 1979;91:357–63.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Podolsky SH, Zembowicz A, Schoen FJ, Benjamin RJ, Sonna LA. Massive myocardial necrosis in thrombotic thrombocytopenic purpura: a case report and review of the literature. Arch Pathol Lab Med. 1999;123:937–40.PubMedGoogle Scholar
  81. 81.
    Wajima T, Johnson EH. Sudden cardiac death from thrombotic thrombocytopenic purpura. Clin Appl Thromb Hemost. 2000;6:108–10.PubMedCrossRefGoogle Scholar
  82. 82.
    Hughes C, McEwan JR, Longair I, Hughes S, Cohen H, Machin S, et al. Cardiac involvement in acute thrombotic thrombocytopenic purpura: association with troponin T and IgG antibodies to ADAMTS 13. J Thromb Haemost. 2009;7:529–36.PubMedCrossRefGoogle Scholar
  83. 83.
    Brain MC, Dacie JV, Hourihane DO. Microangiopathic haemolytic anaemia: the possible role of vascular lesions in pathogenesis. Br J Haematol. 1962;8:358–74.PubMedCrossRefGoogle Scholar
  84. 84.
    Tsai HM. Platelet activation and the formation of the platelet plug: deficiency of ADAMTS13 causes thrombotic thrombocytopenic purpura. Arterioscler Thromb Vasc Biol. 2003;23:388–96.PubMedCrossRefGoogle Scholar
  85. 85.
    Roriz M, Landais M, Desprez J, Barbet C, Azoulay E, Galicier L, et al. Risk factors for autoimmune diseases development after thrombotic thrombocytopenic purpura. Medicine (Baltimore). 2015;94:e1598.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Amoura Z, Costedoat-Chalumeau N, Veyradier A, Wolf M, Ghillani-Dalbin P, Cacoub P, et al. Thrombotic thrombocytopenic purpura with severe ADAMTS-13 deficiency in two patients with primary antiphospholipid syndrome. Arthritis Rheum. 2004;50:3260–4.Google Scholar
  87. 87.
    Trent K, Neustater BR, Lottenberg R. Chronic relapsing thrombotic thrombocytopenic purpura and antiphospholipid antibodies: a report of two cases. Am J Hematol. 1997;54:155–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Espinosa G, Bucciarelli S, Cervera R, Lozano M, Reverter JC, de la Red G, et al. Thrombotic microangiopathic haemolytic anaemia and antiphospholipid antibodies. Ann Rheum Dis. 2004;63:730–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Asamiya Y, Moriyama T, Takano M, Iwasaki C, Kimura K, Ando Y, et al. Successful treatment with rituximab in a patient with TTP secondary to severe ANCA-associated vasculitis. Intern Med. 2010;49:1587–91.PubMedCrossRefGoogle Scholar
  90. 90.
    Yamashita H, Takahashi Y, Kaneko H, Kano T, Mimori A. Thrombotic thrombocytopenic purpura with an autoantibody to ADAMTS13 complicating Sjögren’s syndrome: two cases and a literature review. Mod Rheumatol. 2013;23:365–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Suzuki E, Kanno T, Asano T, Tsutsumi A, Kobayashi H, Watanabe H, et al. Two cases of mixed connective tissue disease complicated with thrombotic thrombocytopenic purpura. Fukushima J Med Sci. 2013;59:49–55.PubMedCrossRefGoogle Scholar
  92. 92.
    Manadan AM, Harris C, Block JA. Thrombotic thrombocytopenic purpura in the setting of systemic sclerosis. Semin Arthritis Rheum. 2005;34:683–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Pallot-Prades B, Benvenuto V, Riffat G, Alexandre C. Thrombotic thrombocytopenic purpura and ankylosing spondylarthritis. Apropos of a case. Rev Med Interne. 1993;14:115–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Jiang H, An X, Li Y, Sun Y, Shen G, Tu Y, et al. Clinical features and prognostic factors of thrombotic thrombocytopenic purpura associated with systemic lupus erythematosus: a literature review of 105 cases from 1999 to 2011. Clin Rheumatol. 2014;33:419–27.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Letchumanan P, Ng HJ, Lee LH, Thumboo J. A comparison of thrombotic thrombocytopenic purpura in an inception cohort of patients with and without systemic lupus erythematosus. Rheumatology (Oxford). 2009;48:399–403.CrossRefGoogle Scholar
  96. 96.
    Musio F, Bohen EM, Yuan CM, Welch PG. Review of thrombotic thrombocytopenic purpura in the setting of systemic lupus erythematosus. Semin Arthritis Rheum. 1998;28:1–19.PubMedCrossRefGoogle Scholar
  97. 97.
    Kwok SK, Ju JH, Cho CS, Kim HY, Park SH. Thrombotic thrombocytopenic purpura in systemic lupus erythematosus: risk factors and clinical outcome: a single centre study. Lupus. 2009;18:16–21.PubMedCrossRefGoogle Scholar
  98. 98.
    Muscal E, Edwards RM, Kearney DL, Hicks JM, Myones BL, Teruya J. Thrombotic microangiopathic hemolytic anemia with reduction of ADAMTS13 activity: initial manifestation of childhood-onset systemic lupus erythematosus. Am J Clin Pathol. 2011;135:406–16.PubMedCrossRefGoogle Scholar
  99. 99.
    Veyradier A, Obert B, Houllier A, Meyer D, Girma JP. Specific von Willebrand factor-cleaving protease in thrombotic microangiopathies: a study of 111 cases. Blood. 2001;98:1765–72.PubMedCrossRefGoogle Scholar
  100. 100.
    Grillberger R, Casina VC, Turecek PL, Zheng XL, Rottensteiner H, Scheiflinger F. Anti-ADAMTS13 IgG autoantibodies present in healthy individuals share linear epitopes with those in patients with thrombotic thrombocytopenic purpura.[letter]. Haematologica. 2014;99(4):e58–60.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yamaguchi Y, Moriki T, Igari A, Nakagawa T, Wada H, Matsumoto M, et al. Epitope analysis of autoantibodies to ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Thromb Res. 2011;128:169–73.PubMedCrossRefGoogle Scholar
  102. 102.
    Klaus C, Plaimauer B, Studt JD, Dorner F, Lämmle B, Mannucci PM, et al. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood. 2004;103:4514–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Zander CB, Cao W, Zheng XL. ADAMTS13 and von Willebrand factor interactions. Curr Opin Hematol. 2015;22:452–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pos W, Crawley JT, Fijnheer R, Voorberg J, Lane DA, Luken BM. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood. 2010;115:1640–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Pos W, Sorvillo N, Fijnheer R, Feys HB, Kaijen PH, Vidarsson G, et al. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica. 2011;96:1670–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Igari A, Nakagawa T, Moriki T, Yamaguchi Y, Matsumoto M, Fujimura Y, et al. Identification of epitopes on ADAMTS13 recognized by a panel of monoclonal antibodies with functional or non-functional effects on catalytic activity. Thromb Res. 2012;130:e79–83.PubMedCrossRefGoogle Scholar
  107. 107.
    Luken BM, Turenhout EA, Kaijen PH, Greuter MJ, Pos W, van Mourik J, et al. Amino acid regions 572-579 and 657-666 of the spacer domain of ADAMTS13 provide a common antigenic core required for binding of antibodies in patients with acquired TTP. Thromb Haemost. 2006;96:295–301.PubMedCrossRefGoogle Scholar
  108. 108.
    Pos W, Luken BM, Sorvillo N, Kremer Hovinga JA, Voorberg J. Humoral immune response to ADAMTS13 in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2011;9:1285–91.PubMedCrossRefGoogle Scholar
  109. 109.
    Schaller M, Vogel M, Kentouche K, Lämmle B, Kremer Hovinga JA. The splenic autoimmune response to ADAMTS13 in thrombotic thrombocytopenic purpura contains recurrent antigen-binding CDR3 motifs. Blood. 2014;124:3469–79.PubMedCrossRefGoogle Scholar
  110. 110.
    Luken BM, Kaijen PH, Turenhout EA, Kremer Hovinga JA, van Mourik JA, Fijnheer R, et al. Multiple B-cell clones producing antibodies directed to the spacer and disintegrin/thrombospondin type-1 repeat 1 (TSP1) of ADAMTS13 in a patient with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2006;4:2355–64.PubMedCrossRefGoogle Scholar
  111. 111.
    Scheiflinger F, Knöbl P, Trattner B, Plaimauer B, Mohr G, Dockal M, et al. Nonneutralizing IgM and IgG antibodies to von Willebrand factor-cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Blood. 2003;102:3241–3.PubMedCrossRefGoogle Scholar
  112. 112.
    Shelat SG, Smith P, Ai J, Zheng XL. Inhibitory autoantibodies against ADAMTS-13 in patients with thrombotic thrombocytopenic purpura bind ADAMTS-13 protease and may accelerate its clearance in vivo. J Thromb Haemost. 2006;4:1707–17.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rieger M, Mannucci PM, Kremer Hovinga JA, Herzog A, Gerstenbauer G, Konetschny C, et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood. 2005;106:1262–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Mannucci PM, Canciani MT, Forza I, Lussana F, Lattuada A, Rossi E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood. 2001;98:2730–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Uemura M, Matsuyama T, Ishikawa M, Fujimoto M, Kojima H, Sakurai S, et al. Decreased activity of plasma ADAMTS13 may contribute to the development of liver disturbance and multiorgan failure in patients with alcoholic hepatitis. Alcohol Clin Exp Res. 2005;29:264S–71S.CrossRefGoogle Scholar
  116. 116.
    Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107:528–34.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Nguyen TC, Liu A, Liu L, Ball C, Choi H, May WS, et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92:121–4.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    McDonald V, Laffan M, Benjamin S, Bevan D, Machin S, Scully MA. Thrombotic thrombocytopenic purpura precipitated by acute pancreatitis: a report of seven cases from a regional UK TTP registry. Br J Haematol. 2009;144:430–3.PubMedCrossRefGoogle Scholar
  119. 119.
    Ali MA, Shaheen JS, Khan MA. Acute pancreatitis induced thrombotic thrombocytopenic purpura. Indian J Crit Care Med. 2014;18:107–9.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Sánchez-Luceros A, Farías CE, Amaral MM, Kempfer AC, Votta R, Marchese C, et al. von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost. 2004;92:1320–6.Google Scholar
  121. 121.
    Moatti-Cohen M, Garrec C, Wolf M, Boisseau P, Galicier L, Azoulay E, et al. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood. 2012;119:5888–97.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Niv E, Segev A, Ellis MH. Staphylococcus aureus bacteremia as a cause of early relapse of thrombotic thrombocytopenic purpura. Transfusion. 2000;40:1067–70.PubMedCrossRefGoogle Scholar
  123. 123.
    Creager AJ, Brecher ME, Bandarenko N. Thrombotic thrombocytopenic purpura that is refractory to therapeutic plasma exchange in two patients with occult infection. Transfusion. 1998;38:419–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Tsai HM. The molecular biology of thrombotic microangiopathy. Kidney Int. 2006;70:16–23.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Park YA, Hay SN, Brecher ME. ADAMTS13 activity levels in patients with human immunodeficiency virus-associated thrombotic microangiopathy and profound CD4 deficiency. J Clin Apher. 2009;24:32–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Pirrotta MT, Bucalossi A. Thrombotic microangiopathy and occult neoplasia. Cardiovasc Hematol Disord Drug Targets. 2010;10:87–93.PubMedCrossRefGoogle Scholar
  127. 127.
    Tsai HM, Rice L, Sarode R, Chow TW, Moake JL. Antibody inhibitors to von Willebrand factor metalloproteinase and increased binding of von Willebrand factor to platelets in ticlopidine-associated thrombotic thrombocytopenic purpura. Ann Intern Med. 2000;132:794–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Bennett CL, Connors JM, Carwile JM, Moake JL, Bell WR, Tarantolo SR, et al. Thrombotic thrombocytopenic purpura associated with clopidogrel. N Engl J Med. 2000;342:1773–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Zakarija A, Kwaan HC, Moake JL, Bandarenko N, Pandey DK, JM MK, et al. Ticlopidine- and clopidogrel-associated thrombotic thrombocytopenic purpura (TTP): review of clinical, laboratory, epidemiological, and pharmacovigilance findings (1989–2008). Kidney Int Suppl. 2009;75:S20–4.CrossRefGoogle Scholar
  130. 130.
    Nazzal M, Safi F, Arma F, Nazzal M, Muzaffar M, Assaly R. Micafungin-induced thrombotic thrombocytopenic purpura: a case report and review of the literature. Am J Ther. 2011;18:e258–60.PubMedCrossRefGoogle Scholar
  131. 131.
    Reese JA, Bougie DW, Curtis BR, Terrell DR, Vesely SK, Aster RH, et al. Drug-induced thrombotic microangiopathy: experience of the Oklahoma Registry and the BloodCenter of Wisconsin. Am J Hematol. 2015;90:406–10.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Al-Nouri ZL, Reese JA, Terrell DR, Vesely SK, George JN. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood. 2015;125:616–8.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Law SK, Levine RP. Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci U S A. 1977;74:2701–5.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Pangburn MK, Ferreira VP, Cortes C. Discrimination between host and pathogens by the complement system. Vaccine. 2008;26(Suppl 8):I15–21.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Law SK, Dodds AW. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 1997;6:263–74.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Schreiber RD, Pangburn MK, Lesavre PH, Müller-Eberhard HJ. Initiation of the alternative pathway of complement: recognition of activators by bound C3b and assembly of the entire pathway from six isolated proteins. PNAS. 1978;75:3948–52.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Rawal N, Pangburn M. Formation of high-affinity C5 convertases of the alternative pathway of complement. J Immunol. 2001;166:2635–42.PubMedCrossRefGoogle Scholar
  138. 138.
    Fearon DT, Austen KF, Ruddy S. Formation of a hemolytically active cellular intermediate by the interaction between properdin factors B and D and the activated third component of complement. J Exp Med. 1973;138:1305–13.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Pillemer L, Blum L, Lepow IH, Ross OA, Todd EW, Wardlaw AC. The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science. 1954;120:279–85.PubMedCrossRefGoogle Scholar
  140. 140.
    Weiler JM, Daha MR, Austen KF, Fearon DT. Control of the amplification convertase of complement by the plasma protein beta1H. Proc Natl Acad Sci U S A. 1976;73:3268–72.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kinoshita T, Takata Y, Kozono H, Takeda J, Hong KS, Inoue K. C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J Immunol. 1988;141:3895.PubMedGoogle Scholar
  142. 142.
    Kazatchkine MD, Fearon DT, Austen KF. Human alternative complement pathway: membrane-associated sialic acid regulates the competition between B and beta1 H for cell-bound C3b. J Immunol. 1979;122:75–81.PubMedGoogle Scholar
  143. 143.
    Whaley K, Ruddy S. Modulation of the alternative complement pathways by beta 1 H globulin. J Exp Med. 1976;144:1147–63.PubMedCrossRefGoogle Scholar
  144. 144.
    Harrison RA, Lachmann PJ. The physiological breakdown of the third component of human complement. Mol Immunol. 1980;17:9–20.PubMedCrossRefGoogle Scholar
  145. 145.
    Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:345–57.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Liszewski MK, Post TW, Atkinson JP. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9:431–55.PubMedCrossRefGoogle Scholar
  147. 147.
    Fearon DT. Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979;76:5867–71.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Fearon DT. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J Exp Med. 1980;152:20–30.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Nicholson-Weller A, Burge J, Fearon DT, Weller PF, Austen KF. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982;129:184–9.PubMedGoogle Scholar
  150. 150.
    Turner NA, Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis. PLoS One. 2013;8:e59372.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Tati R, Kristoffersson AC, Stahl AL, Rebetz J, Wang L, Licht C, et al. Complement activation associated with ADAMTS13 deficiency in human and murine thrombotic microangiopathy. J Immunol. 2013;191:2184–93.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Feng S, Liang X, Cruz MA, Vu H, Zhou Z, Pemmaraju N, et al. The interaction between factor H and Von Willebrand factor. PLoS One. 2013;8:e737.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Turner N, Sartain S, Moake J. Ultralarge Von Willebrand factor-induced platelet clumping and activation of the alternative complement pathway in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndromes. Hematol Oncol Clin North Am. 2015;29:509–24.PubMedCrossRefGoogle Scholar
  154. 154.
    Ruiz-Torres MP, Casiraghi F, Galbusera M, Macconi D, Gastoldi S, Todeschini M, et al. Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies. Thromb Haemost. 2005;93:443–52.Google Scholar
  155. 155.
    Reti M, Farkas P, Csuka D, Razso K, Schlammadinger A, Udvardy ML, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10:791–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Cataland SR, Holers VM, Geyer S, Yang S, Wu HM. Biomarkers of terminal complement activation confirm the diagnosis of aHUS and differentiate aHUS from TTP. Blood. 2014;123:3733–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Cao W, Pham HP, Williams LA, McDaniel J. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura. Haematologica. 2016;101(11):1319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Tsai E, Chapin J, Laurence JC, Tsai HM. Use of eculizumab in the treatment of a case of refractory, ADAMTS13-deficient thrombotic thrombocytopenic purpura: additional data and clinical follow-up. Br J Haematol. 2013;162:558–9.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Patschan D, Korsten P, Behlau A, Vasko R, Heeg M, Sweiss N, et al. Idiopathic combined, autoantibody-mediated ADAMTS-13/factor H deficiency in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome in a 17-year-old woman: a case report. J Med Case Rep. 2011;5:598.Google Scholar
  160. 160.
    Chapin J, Weksler B, Magro C, Laurence J. Eculizumab in the treatment of refractory idiopathic thrombotic thrombocytopenic purpura.[letter]. Br J Haematol. 2012;157(6):772–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Baylor College of Medicine, Texas Children’s HospitalHoustonUSA

Personalised recommendations