Background and Presentation of Thrombotic Thrombocytopenic Purpura

  • Clay CohenEmail author


Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy (TMA) characterized by platelet-rich microthrombi which occlude capillaries and result in thrombocytopenia, hemolytic anemia, and organ damage. The mortality rate is about 90% in untreated individuals, carrying significant long-term morbidity for survivors. TTP is a rare condition, having many clinical features that overlap other TMA syndromes and more common hematology disorders. Timely recognition and treatment are critical for patient survival. The “classic pentad” of TTP (thrombocytopenia, microangiopathic hemolytic anemia, neurologic abnormalities, renal failure, and fever) is an uncommon presentation as TTP frequently presents with vague and nonspecific clinical signs and symptoms. The cause is a marked decrease in the von Willebrand factor-cleaving protease, ADAMTS-13, either through inhibitory antibodies or a congenital deficiency of the enzyme.


Thrombotic thrombocytopenic purpura Thrombotic microangiopathy ADAMTS13 Microangiopathic hemolytic anemia Thrombocytopenia Upshaw-Schulman syndrome 


  1. 1.
    Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc N Y Pathol Soc. 1924;24:21–4.Google Scholar
  2. 2.
    Gore I. Disseminated arteriolar and capillary platelet thrombosis; a morphologic study of its histogenesis. Am J Pathol. 1950;26(1):155–75, incl 4 plPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amorosi E, Ultmann J. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–60.CrossRefGoogle Scholar
  4. 4.
    Lian EC, Harkness DR, Byrnes JJ, Wallach H, Nunez R. Presence of a platelet aggregating factor in the plasma of patients with thrombotic thrombocytopenic purpura (TTP) and its inhibition by normal plasma. Blood. 1979;53(2):333–8.PubMedGoogle Scholar
  5. 5.
    Lian EC. The role of increased platelet aggregation in TTP. Semin Thromb Hemost. 1980;6(4):401–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Moake JL, Rudy CK, Troll JH, Weinstein MJ, Colannino NM, Azocar J, et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest. 1986;78(6):1456–61.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood. 1994;83(8):2171–9.PubMedGoogle Scholar
  9. 9.
    Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.PubMedGoogle Scholar
  10. 10.
    Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.PubMedGoogle Scholar
  11. 11.
    Furlan M, Robles R, Galbusera M, Remuzzi G, Kyrle PA, Brenner B, et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339(22):1578–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Upshaw JD Jr. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood. 1960;16:943–57.PubMedGoogle Scholar
  16. 16.
    Furlan M, Robles R, Solenthaler M, Lammle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood. 1998;91(8):2839–46.PubMedGoogle Scholar
  17. 17.
    Moake JL, Rudy CK, Troll JH, Schafer AI, Weinstein MJ, Colannino NM, et al. Therapy of chronic relapsing thrombotic thrombocytopenic purpura with prednisone and azathioprine. Am J Hematol. 1985;20(1):73–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Burke HA Jr, Hartmann RC. Thrombotic thrombocytopenic purpura two patients with remission associated with the use of large amounts of steroids. AMA Arch Intern Med. 1959;103(1):105–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Rubinstein MA, Kagan BM, Macgillviray MH, Merliss R, Sacks H. Unusual remission in a case of thrombotic thrombocytopenic purpura syndrome following fresh blood exchange transfusions. Ann Intern Med. 1959;51:1409–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Byrnes JJ, Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. N Engl J Med. 1977;297(25):1386–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Bukowski RM, King JW, Hewlett JS. Plasmapheresis in the treatment of thrombotic thrombocytopenic purpura. Blood. 1977;50(3):413–7.PubMedGoogle Scholar
  22. 22.
    Rock GA, Shumak KH, Buskard NA, Blanchette VS, Kelton JG, Nair RC, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Reese JA, Muthurajah DS, Kremer Hovinga JA, Vesely SK, Terrell DR, George JN. Children and adults with thrombotic thrombocytopenic purpura associated with severe, acquired Adamts13 deficiency: comparison of incidence, demographic and clinical features. Pediatr Blood Cancer. 2013;60(10):1676–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Mansouri Taleghani M, von Krogh AS, Fujimura Y, George JN, Hrachovinova I, Knobl PN, et al. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie. 2013;33(2):138–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Furlan M, Lammle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol. 2001;14(2):437–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Moatti-Cohen M, Garrec C, Wolf M, Boisseau P, Galicier L, Azoulay E, et al. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood. 2012;119(24):5888–97.PubMedCrossRefGoogle Scholar
  27. 27.
    von Auer C, von Krogh AS, Kremer Hovinga JA, Lammle B. Current insights into thrombotic microangiopathies: thrombotic thrombocytopenic purpura and pregnancy. Thromb Res. 2015;135(Suppl 1):S30–3.CrossRefGoogle Scholar
  28. 28.
    Mariotte E, Azoulay E, Galicier L, Rondeau E, Zouiti F, Boisseau P, et al. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopathy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microangiopathy. Lancet Haematol. 2016;3(5):e237–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Lotta LA, Garagiola I, Palla R, Cairo A, Peyvandi F. ADAMTS13 mutations and polymorphisms in congenital thrombotic thrombocytopenic purpura. Hum Mutat. 2010;31(1):11–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600.PubMedCrossRefGoogle Scholar
  31. 31.
    Pennington H. Escherichia coli O157. Lancet. 2010;376(9750):1428–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Mark TC. Enterohaemorrhagic Escherichia coli and Shigella dysenteriae type 1-induced haemolytic uraemic syndrome. Pediatr Nephrol. 2008;23(9):1425–31.CrossRefGoogle Scholar
  33. 33.
    Hussein HS, Bollinger LM. Prevalence of Shiga toxin-producing Escherichia coli in beef cattle. J Food Prot. 2005;68(10):2224–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Milnes AS, Stewart I, Clifton-Hadley FA, Davies RH, Newell DG, Sayers AR, et al. Intestinal carriage of verocytotoxigenic Escherichia coli O157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiol Infect. 2008;136(6):739–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Huang J, Motto DG, Bundle DR, Sadler JE. Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood. 2010;116(18):3653–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chandler WL, Jelacic S, Boster DR, Ciol MA, Williams GD, Watkins SL, et al. Prothrombotic coagulation abnormalities preceding the hemolytic-uremic syndrome. N Engl J Med. 2002;346(1):23–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Robinson LA, Hurley RM, Lingwood C, Matsell DG. Escherichia coli verotoxin binding to human paediatric glomerular mesangial cells. Pediatr Nephrol. 1995;9(6):700–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Lingwood CA. Verotoxin-binding in human renal sections. Nephron. 1994;66(1):21–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Hughes AK, Stricklett PK, Kohan DE. Shiga toxin-1 regulation of cytokine production by human glomerular epithelial cells. Nephron. 2001;88(1):14–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, et al. A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA. 1994;272(17):1349–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005;365(9464):1073–86.PubMedGoogle Scholar
  42. 42.
    Fakhouri F, Zuber J, Fremeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet. 2017;390(10095):681–96.PubMedCrossRefGoogle Scholar
  43. 43.
    Bale JF Jr, Brasher C, Siegler RL. CNS manifestations of the hemolytic-uremic syndrome. Relationship to metabolic alterations and prognosis. Am J Dis Child. 1980;134(9):869–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Fremeaux-Bacchi V, Dragon-Durey MA, Blouin J, Vigneau C, Kuypers D, Boudailliez B, et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet. 2004;41(6):e84.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Richards A, Kemp EJ, Liszewski MK, Goodship JA, Lampe AK, Decorte R, et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2003;100(22):12966–71.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104(1):240–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Ying L, Katz Y, Schlesinger M, Carmi R, Shalev H, Haider N, et al. Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome. Am J Hum Genet. 1999;65(6):1538–46.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dragon-Durey MA, Loirat C, Cloarec S, Macher MA, Blouin J, Nivet H, et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(2):555–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sperati CJ, Moliterno AR. Thrombotic microangiopathy: focus on atypical hemolytic uremic syndrome. Hematol Oncol Clin North Am. 2015;29(3):541–59.PubMedCrossRefGoogle Scholar
  51. 51.
    Greenbaum LA. Atypical hemolytic uremic syndrome. Adv Pediatr. 2014;61(1):335–56.PubMedCrossRefGoogle Scholar
  52. 52.
    George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Bresin E, Rurali E, Caprioli J, Sanchez-Corral P, Fremeaux-Bacchi V, Rodriguez de Cordoba S, et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol. 2013;24(3):475–86.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nayer A, Asif A. Atypical hemolytic-uremic syndrome: a clinical review. Am J Ther. 2016;23(1):e151–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Caprioli J, Noris M, Brioschi S, Pianetti G, Castelletti F, Bettinaglio P, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Shatzel JJ, Taylor JA. Syndromes of thrombotic microangiopathy. Med Clin North Am. 2017;101(2):395–415.PubMedCrossRefGoogle Scholar
  57. 57.
    Loirat C, Niaudet P. The risk of recurrence of hemolytic uremic syndrome after renal transplantation in children. Pediatr Nephrol. 2003;18(11):1095–101.PubMedCrossRefGoogle Scholar
  58. 58.
    Skerka C, Jozsi M, Zipfel PF, Dragon-Durey MA, Fremeaux-Bacchi V. Autoantibodies in haemolytic uraemic syndrome (HUS). Thromb Haemost. 2009;101(2):227–32.PubMedGoogle Scholar
  59. 59.
    Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Mannucci PM, Cugno M. The complex differential diagnosis between thrombotic thrombocytopenic purpura and the atypical hemolytic uremic syndrome: laboratory weapons and their impact on treatment choice and monitoring. Thromb Res. 2015;136(5):851–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Licht C, Weyersberg A, Heinen S, Stapenhorst L, Devenge J, Beck B, et al. Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement cofactor protein domain 15. Am J kidney Dis. 2005;45(2):415–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Nishimura J, Yamamoto M, Hayashi S, Ohyashiki K, Ando K, Brodsky AL, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014;370(7):632–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Benamu E, Montoya JG. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis. 2016;29(4):319–29.PubMedCrossRefGoogle Scholar
  64. 64.
    Webb RF, Ramirez AM, Hocken AG, Pettit JE. Acute intravascular haemolysis due to quinine. N Z Med J. 1980;91(651):14–6.PubMedGoogle Scholar
  65. 65.
    Gottschall JL, Neahring B, McFarland JG, Wu GG, Weitekamp LA, Aster RH. Quinine-induced immune thrombocytopenia with hemolytic uremic syndrome: clinical and serological findings in nine patients and review of literature. Am J Hematol. 1994;47(4):283–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Glynne P, Salama A, Chaudhry A, Swirsky D, Lightstone L. Quinine-induced immune thrombocytopenic purpura followed by hemolytic uremic syndrome. Am J Kidney Dis. 1999;33(1):133–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Kojouri K, Vesely SK, George JN. Quinine-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: frequency, clinical features, and long-term outcomes. Ann Intern Med. 2001;135(12):1047–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Huynh M, Chee K, Lau DH. Thrombotic thrombocytopenic purpura associated with quetiapine. Ann Pharmacother. 2005;39(7–8):1346–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Saif MW, Xyla V, Makrilia N, Bliziotis I, Syrigos K. Thrombotic microangiopathy associated with gemcitabine: rare but real. Expert Opin Drug Saf. 2009;8(3):257–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Bennett CL, Weinberg PD, Rozenberg-Ben-Dror K, Yarnold PR, Kwaan HC, Green D. Thrombotic thrombocytopenic purpura associated with ticlopidine. A review of 60 cases. Ann Intern Med. 1998;128(7):541–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Bennett CL, Connors JM, Carwile JM, Moake JL, Bell WR, Tarantolo SR, et al. Thrombotic thrombocytopenic purpura associated with clopidogrel. N Engl J Med. 2000;342(24):1773–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Sartelet H, Toupance O, Lorenzato M, Fadel F, Noel LH, Lagonotte E, et al. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am J Transpl. 2005;5(10):2441–7.CrossRefGoogle Scholar
  73. 73.
    Rabadi SJ, Khandekar JD, Miller HJ. Mitomycin-induced hemolytic uremic syndrome: case presentation and review of literature. Cancer Treat Rep. 1982;66(5):1244–7.PubMedGoogle Scholar
  74. 74.
    Moake JL, Byrnes JJ. Thrombotic microangiopathies associated with drugs and bone marrow transplantation. Hematol Oncol Clin North Am. 1996;10(2):485–97.PubMedCrossRefGoogle Scholar
  75. 75.
    Singh N, Gayowski T, Marino IR. Hemolytic uremic syndrome in solid-organ transplant recipients. Transpl Int. 1996;9(1):68–75.PubMedCrossRefGoogle Scholar
  76. 76.
    Humar A, Jessurun J, Sharp HL, Gruessner RW. Hemolytic uremic syndrome in small-bowel transplant recipients: the first two case reports. Transpl Int. 1999;12(5):387–90.PubMedCrossRefGoogle Scholar
  77. 77.
    Ambruzs JM, Serrell PB, Rahim N, Larsen CP. Thrombotic microangiopathy and acute kidney injury associated with intravenous abuse of an oral extended-release formulation of oxymorphone hydrochloride: kidney biopsy findings and report of 3 cases. Am J Kidney Dis. 2014;63(6):1022–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Centers for Disease Control and Prevention (CDC). Thrombotic thrombocytopenic purpura (TTP)-like illness associated with intravenous Opana ER abuse—Tennessee, 2012. MMWR Morb Mortal Wkly Rep. 2013;62(1):1–4.Google Scholar
  79. 79.
    Lammle B. Opana ER-induced thrombotic microangiopathy. Blood. 2017;129(7):808–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Beck BB, van Spronsen F, Diepstra A, Berger RM, Komhoff M. Renal thrombotic microangiopathy in patients with cblC defect: review of an under-recognized entity. Pediatr Nephrol. 2016;32(5):733–41.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Koenig JC, Rutsch F, Bockmeyer C, Baumgartner M, Beck BB, Kranz B, et al. Nephrotic syndrome and thrombotic microangiopathy caused by cobalamin C deficiency. Pediatr Nephrol. 2015;30(7):1203–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Coppola A, Davi G, De Stefano V, Mancini FP, Cerbone AM, Di Minno G. Homocysteine, coagulation, platelet function, and thrombosis. Semin Thromb Hemost. 2000;26(3):243–54.PubMedCrossRefGoogle Scholar
  83. 83.
    Brunelli SM, Meyers KE, Guttenberg M, Kaplan P, Kaplan BS. Cobalamin C deficiency complicated by an atypical glomerulopathy. Pediatr Nephrol. 2002;17(10):800–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ozaltin F, Li B, Rauhauser A, An SW, Soylemezoglu O, Gonul II, et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol. 2013;24(3):377–84.PubMedCrossRefGoogle Scholar
  86. 86.
    Pettitt TR, Martin A, Horton T, Liossis C, Lord JM, Wakelam MJ. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J Biol Chem. 1997;272(28):17354–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Carew MA, Paleolog EM, Pearson JD. The roles of protein kinase C and intracellular Ca2+ in the secretion of von Willebrand factor from human vascular endothelial cells. Biochem J. 1992;286(Pt 2):631–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ren S, Shatadal S, Shen GX. Protein kinase C-beta mediates lipoprotein-induced generation of PAI-1 from vascular endothelial cells. Am J Physiol Endocrinol Metab. 2000;278(4):E656–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Whatley RE, Nelson P, Zimmerman GA, Stevens DL, Parker CJ, McIntyre TM, et al. The regulation of platelet-activating factor production in endothelial cells. The role of calcium and protein kinase C. J Biol Chem. 1989;264(11):6325–33.PubMedGoogle Scholar
  90. 90.
    Herbert JM, Savi P, Laplace MC, Dumas A, Dol F. Chelerythrine, a selective protein kinase C inhibitor, counteracts pyrogen-induced expression of tissue factor without effect on thrombomodulin down-regulation in endothelial cells. Thromb Res. 1993;71(6):487–93.PubMedCrossRefGoogle Scholar
  91. 91.
    Levin EG, Marotti KR, Santell L. Protein kinase C and the stimulation of tissue plasminogen activator release from human endothelial cells. Dependence on the elevation of messenger RNA. J Biol Chem. 1989;264(27):16030–6.PubMedGoogle Scholar
  92. 92.
    Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hoshi S, Nomoto K, Kuromitsu J, Tomari S, Nagata M. High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem Biophys Res Commun. 2002;290(1):177–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Quaggin SE. DGKE and atypical HUS. Nat Genet. 2013;45(5):475–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(4):345–57.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Esmon C. Do-all receptor takes on coagulation, inflammation. Nat Med. 2005;11(5):475–7.PubMedCrossRefGoogle Scholar
  97. 97.
    George JN. How I treat patients with thrombotic thrombocytopenic purpura: 2010. Blood. 2010;116(20):4060–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323–35.PubMedCrossRefGoogle Scholar
  99. 99.
    Kremer Hovinga JA, Vesely SK, Terrell DR, Lammle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115(8):1500–11; quiz 662PubMedCrossRefGoogle Scholar
  100. 100.
    Joly BS, Stepanian A, Leblanc T, Hajage D, Chambost H, Harambat J, et al. Child-onset and adolescent-onset acquired thrombotic thrombocytopenic purpura with severe ADAMTS13 deficiency: a cohort study of the French national registry for thrombotic microangiopathy. Lancet Haematol. 2016;3(11):e537–e46.PubMedCrossRefGoogle Scholar
  101. 101.
    Schiff DE, Roberts WD, Willert J, Tsai HM. Thrombocytopenia and severe hyperbilirubinemia in the neonatal period secondary to congenital thrombotic thrombocytopenic purpura and ADAMTS13 deficiency. J Pediatr Hematol Oncol. 2004;26(8):535–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Kalish Y, Rottenstreich A, Rund D, Hochberg-Klein S. Atypical presentations of thrombotic thrombocytopenic purpura: a diagnostic role for ADAMTS13. J Thromb Thrombolysis. 2016;42(2):155–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Swisher KK, Doan JT, Vesely SK, Kwaan HC, Kim B, Lammle B, et al. Pancreatitis preceding acute episodes of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: report of five patients with a systematic review of published reports. Haematologica. 2007;92(7):936–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Hughes C, McEwan JR, Longair I, Hughes S, Cohen H, Machin S, et al. Cardiac involvement in acute thrombotic thrombocytopenic purpura: association with troponin T and IgG antibodies to ADAMTS 13. J Thromb Haemost. 2009;7(4):529–36.PubMedCrossRefGoogle Scholar
  105. 105.
    James TN, Monto RW. Pathology of the cardiac conduction system in thrombotic thrombocytopenic purpura. Ann Intern Med. 1966;65(1):37–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Ridolfi RL, Hutchins GM, Bell WR. The heart and cardiac conduction system in thrombotic thrombocytopenic purpura. A clinicopathologic study of 17 autopsied patients. Ann Intern Med. 1979;91(3):357–63.PubMedCrossRefGoogle Scholar
  107. 107.
    Bell MD, Barnhart JS Jr, Martin JM. Thrombotic thrombocytopenic purpura causing sudden, unexpected death—a series of eight patients. J Forensic Sci. 1990;35(3):601–13.PubMedCrossRefGoogle Scholar
  108. 108.
    Nichols L, Berg A, Rollins-Raval MA, Raval JS. Cardiac injury is a common postmortem finding in thrombotic thrombocytopenic purpura patients: is empiric cardiac monitoring and protection needed? Ther Apher Dial. 2015;19(1):87–92.PubMedCrossRefGoogle Scholar
  109. 109.
    Balasubramaniyam N, Kolte D, Palaniswamy C, Yalamanchili K, Aronow WS, McClung JA, et al. Predictors of in-hospital mortality and acute myocardial infarction in thrombotic thrombocytopenic purpura. Am J Med. 2013;126(11):1016.e1–7.CrossRefGoogle Scholar
  110. 110.
    Nokes T, George JN, Vesely SK, Awab A. Pulmonary involvement in patients with thrombotic thrombocytopenic purpura. Eur J Haematol. 2014;92(2):156–63.PubMedCrossRefGoogle Scholar
  111. 111.
    Gasparri ML, Bellati F, Brunelli R, Perrone G, Pecorini F, Papadia A, et al. Thrombotic thrombocytopenic purpura during pregnancy versus imitator of preeclampsia. Transfusion. 2015;55(10):2516–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Scully M, Thomas M, Underwood M, Watson H, Langley K, Camilleri RS, et al. Thrombotic thrombocytopenic purpura and pregnancy: presentation, management, and subsequent pregnancy outcomes. Blood. 2014;124(2):211–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Martin JN Jr, Bailey AP, Rehberg JF, Owens MT, Keiser SD, May WL. Thrombotic thrombocytopenic purpura in 166 pregnancies: 1955-2006. Am J Obstet Gynecol. 2008;199(2):98–104.PubMedCrossRefGoogle Scholar
  114. 114.
    Burns ER, Lou Y, Pathak A. Morphologic diagnosis of thrombotic thrombocytopenic purpura. Am J Hematol. 2004;75(1):18–21.PubMedCrossRefGoogle Scholar
  115. 115.
    Horton TM, Stone JD, Yee D, Dreyer Z, Moake JL, Mahoney DH. Case series of thrombotic thrombocytopenic purpura in children and adolescents. J Pediatr Hematol Oncol. 2003;25(4):336–9.PubMedCrossRefGoogle Scholar
  116. 116.
    George JN. Measuring ADAMTS13 activity in patients with suspected thrombotic thrombocytopenic purpura: when, how, and why? Transfusion. 2015;55(1):11–3.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Mannucci PM, Karimi M, Mosalaei A, Canciani MT, Peyvandi F. Patients with localized and disseminated tumors have reduced but measurable levels of ADAMTS-13 (von Willebrand factor cleaving protease). Haematologica. 2003;88(4):454–8.PubMedGoogle Scholar
  118. 118.
    Bohm M, Gerlach R, Beecken WD, Scheuer T, Stier-Bruck I, Scharrer I. ADAMTS-13 activity in patients with brain and prostate tumors is mildly reduced, but not correlated to stage of malignancy and metastasis. Thromb Res. 2003;111(1–2):33–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Nguyen TC, Liu A, Liu L, Ball C, Choi H, May WS, et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121–4.PubMedCrossRefGoogle Scholar
  120. 120.
    Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34.PubMedCrossRefGoogle Scholar
  121. 121.
    Lattuada A, Rossi E, Calzarossa C, Candolfi R, Mannucci PM. Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica. 2003;88(9):1029–34.PubMedGoogle Scholar
  122. 122.
    Shah N, Rutherford C, Matevosyan K, Shen YM, Sarode R. Role of ADAMTS13 in the management of thrombotic microangiopathies including thrombotic thrombocytopenic purpura (TTP). Br J Haematol. 2013;163(4):514–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Tsai HM. Untying the knot of thrombotic thrombocytopenic purpura and atypical hemolytic uremic syndrome. Am J Med. 2013;126(3):200–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Burrus TM, Wijdicks EF, Rabinstein AA. Brain lesions are most often reversible in acute thrombotic thrombocytopenic purpura. Neurology. 2009;73(1):66–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatric Hematology and OncologyBaylor College of MedicineHoustonUSA

Personalised recommendations