Advertisement

Evans Syndrome: Background, Clinical Presentation, Pathophysiology, and Management

  • Amanda B. Grimes
Chapter

Abstract

Evans syndrome (ES) is a descriptive diagnostic term encompassing autoimmune disorders which affect two or more blood cell lines, resulting most commonly in autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP) but also autoimmune neutropenia (AIN) in some cases. Since Evans and colleagues first described this phenomenon in the 1940s, classically defined ES has expanded to include the occurrence of multilineage autoimmune cytopenias either concurrently or sequentially. Furthermore, advances in the understanding of disease pathogenesis have uncovered many of the underlying etiologies responsible for the autoimmune cytopenias which define this syndrome, such that “idiopathic” is no longer a defining feature of the syndrome. Some of the most common pathologies now known to drive ES include autoimmune lymphoproliferative syndrome (ALPS), common variable immunodeficiency (CVID), and other systemic autoimmune diseases, all with the commonality of a dysregulated immune system in which autoreactive lymphocytes are poorly controlled, ultimately predisposing to autoimmunity. The recent advances in understanding of the pathologies driving ES have allowed for improved insight into optimal diagnostic and management strategies, although work is ongoing in the quest for continued improvement in understanding of disease pathogenesis and better outcomes for patients with ES.

Keywords

Evans syndrome Immune thrombocytopenia Autoimmune hemolytic anemia Autoimmune neutropenia Multilineage autoimmune cytopenias Autoimmune lymphoproliferative syndrome 

References

  1. 1.
    Al Ghaithi I, Wright NAM, Breakey VR, Cox K, Warias A, Wong T, et al. Combined autoimmune cytopenias presenting in childhood. Pediatr Blood Cancer. 2016;63:292–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Wiseman BK, Doan CA. Primary splenic neutropenia; a newly recognized syndrome closely related to congenital hemolytic icterus and essential thrombocytopenic purpura. Ann Intern Med. 1942;16:1097.CrossRefGoogle Scholar
  3. 3.
    Rogers MH, Hall BE. Primary splenic neutropenia. Arch Intern Med. 1945;75:192.CrossRefGoogle Scholar
  4. 4.
    Fisher JA. The cryptogenic acquired hemolytic anemias. Quart J Med. 1947;16:245.PubMedGoogle Scholar
  5. 5.
    Dameshek W, Estren S. Spleen and hypersplenism. New York: Grune & Stratton; 1948.Google Scholar
  6. 6.
    Evans RS, Duane RT. Acquired hemolytic anemia; the relation of erythrocyte antibody production to activity of the disease; the significance of thrombocytopenia and leukopenia. Blood. 1949;4(11):1196–213.PubMedGoogle Scholar
  7. 7.
    Evans RS, Takahashi K, Duane RT, Payne R, Liu C. Primary thrombocytopenic purpura and acquired hemolytic anemia; evidence for a common etiology. AMA Arch Intern Med. 1951;87(1):48–65.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ghosh S, Seidel MG. Editorial: current challenges in immune and other acquired cytopenias of childhood. Front Pediatr. 2016;4:3.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Canale VC, Smith CH. Chronic lymphadenopathy simulating malignant lymphoma. J Pediatr. 1967;70(6):891–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med. 1996;335(22):1643–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Teachey D. New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome. Curr Opin Pediatr. 2012;24:1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pui CH, Wilimas J, Wang W. Evans syndrome in childhood. J Pediatr. 1980;97(5):754–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang WC. Evans syndrome in childhood: pathophysiology, clinical course, and treatment. Am J Pediatr Hematol Oncol. 1988;10(4):330–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Mathew P, Chen G, Wang W. Evans syndrome: results of a national survey. J Pediatr Hematol Oncol. 1997;19(5):433–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Aladjidi N, Leverger G, Leblanc T, Quitterie Picat M, Michel G, Bertrand Y, et al. New insights into childhood autoimmune hemolytic anemia: a French national observational study of 265 children. Haematologica. 2011;96(5):655–63.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Aladjidi N, Fernandes H, Leblanc T, Vareliette A, Rieux-Laucat F, Bertrand Y, et al. Evans syndrome in children: long-term outcome in a prospective French national observational cohort. Front Pediatr. 2015;3:79.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Michel M, Chanet V, Dechartres A, Morin AS, Piette JC, Cirasino L, et al. The spectrum of Evans syndrome in adults: new insight into the disease based on the analysis of 68 cases. Blood. 2009;114(15):3167–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Terrell DR, Beebe LA, Vesely SK, Neas BR, Segal JB, George JN. The incidence of immune thrombocytopenic purpura in children and adults: a critical review of published reports. Am J Hematol. 2010;85(3):174.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Yong M, Schoonen WM, Li L, Kanas G, Coalson J, Mowat F, et al. Epidemiology of paediatric immune thrombocytopenia in the General Practice Research Database. Br J Haematol. 2010;149(6):855–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Segal JB, Powe NR. Prevalence of immune thrombocytopenia: analyses of administrative data. J Thromb Haemost. 2006;4(11):2377–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Schoonen WM, Kucera G, Coalson J, Li L, Rutstein M, Mowat F, et al. Epidemiology of immune thrombocytopenic purpura in the General Practice Research Database. Br J Haematol. 2009;145(2):235–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Aladjidi N, Jutand MA, Beaubois C, Fernandes H, Jeanpetit J, Coureau G, et al. Reliable assessment of the incidence of childhood autoimmune hemolytic anemia. Pediatr Blood Cancer. 2017;64:e26683.CrossRefGoogle Scholar
  23. 23.
    Gehrs BC, Friedberg RC. Autoimmune haemolytic anemia. Am J Hematol. 2002;69(4):258–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Roumier M, Loustau V, Guillaud C, Languille L, Mahevas M, Khellaf M, et al. Characteristics and outcome of warm autoimmune hemolytic anemia in adults: new insights based on a single-center experience with 60 patients. Am J Hematol. 2014;89(9):150–5.CrossRefGoogle Scholar
  25. 25.
    Cines DB, McMillan R. Management of adult idiopathic thrombocytopenic purpura. Annu Rev Med. 2005;56:425–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Miano M. How I manage Evans syndrome and AIHA cases in children. Br J Haematol. 2016;172:524–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Sipurzynski J, Fahrner B, Kerbl R, Crazzolara R, Jones N, Ebetsberger G, et al. Management of chronic immune thrombocytopenia in children and adolescents: lessons from an Austrian national cross-sectional study of 81 patients. Semin Hematol. 2016;53(S1):S43–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Norton A, Roberts I. Management of Evans syndrome. Br J Haematol. 2005;132:125–37.CrossRefGoogle Scholar
  29. 29.
    Teachey DT, Lambert MP. Diagnosis and management of autoimmune cytopenias in childhood. Pediatr Clin N Am. 2013;60(6):1489–511.CrossRefGoogle Scholar
  30. 30.
    Teachey DT, Manno CS, Axsom KM, Andrews T, Choi JK, Greenbaum BH, et al. Unmasking Evans syndrome: T-cell phenotype and apoptotic response reveal autoimmune lymphoproliferative syndrome (ALPS). Blood. 2005;105(6):2443–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Seif AE, Manno CS, Sheen C, Grupp SA, Teachey DT. Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood. 2010;115(11):2142–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Savaşan S, Warrier I, Buck S, Kaplan J, Ravindranath Y. Increased lymphocyte Fas expression and high incidence of common variable immunodeficiency disorder in childhood Evans’ syndrome. Clin Immunol. 2007;125(3):224–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Seidel MG. Autoimmune and other cytopenias in primary immunodeficiencies: pathomechanisms, novel differential diagnoses, and treatment. Blood. 2014;124(15):2337–44.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Li E, Grimes AB, Rider NL, Mahoney DH, Fleisher TA, Shearer WT. Diagnostic dilemma: ALPS versus Evans syndrome. Clin Immunol. 2017;183:247–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferative disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356(6367):314–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Sneller MC, Straus SE, Jaffe ES, Jaffe JS, Fleisher TA, Stetler-Stevenson M, et al. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest. 1992;90(2):334–41.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994;76(6):969–76.PubMedCrossRefGoogle Scholar
  38. 38.
    Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268(5215):1347–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Sneller MC, Wang J, Dale JK, Strober W, Middleton LA, Choi Y, et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood. 1997;89(4):1341–8.PubMedGoogle Scholar
  41. 41.
    Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35–40.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang J, Cunningham-Rundles C. Treatment and outcome of autoimmune hematologic disease in common variable immunodeficiency (CVID). J Autoimmun. 2005;25(1):57–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86.PubMedCrossRefGoogle Scholar
  44. 44.
    Boileau J, Mouillot G, Gerard L, Carmagnat M, Rabian C, Oksenhendler E, et al. Autoimmunity in common variable immunodeficiency: correlation with lymphocyte phenotype in the French DEFI study. J Autoimmun. 2011;36:25–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gathmann B, Mahlaoui N, Ceredih L, Gerard E, Oksenhendler K, Warnatz I, et al. European Society for Immunodeficiencies Registry Working. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116–26.PubMedCrossRefGoogle Scholar
  47. 47.
    Feuille EJ, Anooshiravani N, Sullivan KE, Fuleihan RL, Cunningham-Rundles C. Autoimmune cytopenias and associated conditions in CVID: a report from the USIDNET Registry. J Clin Immunol. 2017;38(1):28–34.  https://doi.org/10.1007/s10875-017-0456-9. [Epub ahead of print].CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Michel M, Chanet V, Galicier L, Ruivard M, Levy Y, Hermine O, et al. Autoimmune thrombocytopenia purpura and common variable immunodeficiency: analysis of 21 cases and review of the literature. Medicine (Baltimore). 2004;83(4):254–63.CrossRefGoogle Scholar
  49. 49.
    Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med. 1999;130:591–601.PubMedCrossRefGoogle Scholar
  50. 50.
    Ohga S, Nomura A, Takahata Y, Ihara K, Takada H, Wakiguchi H, et al. Dominant expression of interleukin 10 but not interferon gamma in CD4(-)CD8(-)alphabeta T cells of autoimmune lymphoproliferative syndrome. Br J Haematol. 2002;119(2):535–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Teachey DT, Seif AE, Grupp SA. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol. 2010;148:205–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Kuehn HS, Caminha I, Niemela JE, Rao VK, Davis J, Fleisher TA, et al. FAS haploinsufficiency is a common disease mechanism in the human autoimmune lymphoproliferative syndrome. J Immunol. 2011;186(10):6035–43.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Magerus-Chatinet A, Neven B, Stolzenberg MC, Daussy C, Arkwright PD, Lanzarotti N, et al. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J Clin Invest. 2011;121(1):106–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Clementi R, Dagna L, Dianzani U, Dupré L, Dianzani I, Ponzoni M, et al. Inherited perforin and Fas mutations in a patient with autoimmune lymphoproliferative syndrome and lymphoma. N Engl J Med. 2004;351(14):1419–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Campagnoli MF, Garbarini L, Quarello P, Garelli E, Carando A, Baravalle V, et al. The broad spectrum of autoimmune lymphoproliferative disease: molecular bases, clinical features and long-term follow-up in 31 patients. Haematologica. 2006;91(4):538–41.PubMedGoogle Scholar
  56. 56.
    Maglione PJ. Autoimmune and lymphoproliferative complications of common variable immunodeficiency. Curr Allergy Asthma Rep. 2016;16(3):19.PubMedCrossRefGoogle Scholar
  57. 57.
    Ameratunga R, Brewerton M, Slade C, Jordan A, Gillis D, Steele R, et al. Comparison of diagnostic criteria for common variable immunodeficiency disorder. Front Immunol. 2014;5:415.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77–85.PubMedCrossRefGoogle Scholar
  59. 59.
    Carter CR, Aravind G, Smalle NL, Cole JY, Savic S, Wood PM. CVID patients with autoimmunity have elevated T cell expression of granzyme B and HLA-DR and reduced levels of Treg cells. J Clin Pathol. 2013;66(2):146–50.PubMedCrossRefGoogle Scholar
  60. 60.
    Genre J, Errante PR, Kokron CM, Toldeo-Barros M, Camara NO, Rizzo LV. Reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells and diminished FOXP3 expression in patients with common variable immunodeficiency: a link to autoimmunity? Clin Immunol. 2009;132(2):215–21.PubMedCrossRefGoogle Scholar
  61. 61.
    Meffre E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann N Y Acad Sci. 2011;1246:1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    von Boehmer H, Melchers F. Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol. 2010;11(1):14–20.CrossRefGoogle Scholar
  63. 63.
    Salzer U, Chapel HM, Webster AD, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37(8):820–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Warnatz K, Wehr C, Dräger R, Schmidt S, Eibel H, Schlesier M, et al. Expansion of CD19(hi)CD21(lo/neg) B cells in common variable immunodeficiency (CVID) patients with autoimmune cytopenia. Immunobiology. 2002;206(5):502–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Isnardi I, Ng YS, Menard L, Meyers G, Saadoun D, Srdanovic I, et al. Complement receptor 2/CD21- human naïve B cells contain mostly autoreactive unresponsive clones. Blood. 2010;115(24):5026–36.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhang L, Wu X, Wang L, Li J, Chen H, Zhao Y, et al. Clinical features of systemic lupus erythematosus patients complicated with Evans syndrome: a case-control, single center study. Medicine (Baltimore). 2016;95(15):e3279.CrossRefGoogle Scholar
  68. 68.
    Newman K, Owlia MB, El-Hemaidi I, Akhtari M. Management of immune cytopenias in patients with systemic lupus erythematosus—old and new. Autoimmun Rev. 2013;12(7):784–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Kuwana M, Okazaki Y, Kajihara M, Kaburaki J, Miyazaki H, Kawakami Y, et al. Autoantibody to c-Mpl (thrombopoietin receptor) in systemic lupus erythematosus: relationship to thrombocytopenia with megakaryocytic hypoplasia. Arthritis Rheum. 2002;46:2148–59.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cines DB, Liebman H, Stasi R. Pathobiology of secondary immune thrombocytopenia. Semin Hematol. 2009;46(1 Suppl 2):S2–14.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nakamura M, Tanaka Y, Satoh T, Kawai M, Hirakata M, Kaburaki J, et al. Autoantibody to CD40 ligand in systemic lupus erythematosus: association with thrombocytopenia but not thromboembolism. Rheumatology (Oxford). 2006;45(2):150–6.CrossRefGoogle Scholar
  72. 72.
    Liu Y, Chen S, Sun Y, Lin Q, Liao X, Zhang J, et al. Clinical characteristics of immune thrombocytopenia associated with autoimmune disease: a retrospective study. Medicine (Baltimore). 2016;95(50):e5565.CrossRefGoogle Scholar
  73. 73.
    Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 2007;104(21):8953–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Niemela J, Lu L, Fleisher TA, Davis J, Caminha I, Natter M, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117:2883–6.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Chun HJ, Zheng I, Ahmad M, Wang J, Speirs CK, Siegel RM, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419(6905):395–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Shiota M, Yang X, Kubokawa M, Morishima T, Tanaka K, Mikami M, et al. Somatic mosaicism for a NRAS mutation associates with disparate clinical features in RAS-associated leukoproliferative disease: a report of two cases. J Clin Immunol. 2015;35(5):454–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Dianzani U, Bragardo M, DiFranco D, Alliaudi C, Scagni P, Buonfiglio D, et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation. Blood. 1997;89(8):2871–9.PubMedGoogle Scholar
  79. 79.
    Ramenghi U, Bonissoni S, Migliaretti G, DeFranco S, Bottarel F, Gambaruto C, et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood. 2000;95(10):3176–82.PubMedGoogle Scholar
  80. 80.
    Schubert D, Bode C, Kenefeck B, Hou TZ, Wing JB, Kennedy A, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kucuk ZY, Charbonnier LM, McMasters RL, Chatila T, Bleesing JJ. CTLA-4 haploinsufficiency in a patient with an autoimmune lymphoproliferative disorder. J Allergy Clin Immunol. 2017;140(3):862–4.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lopez-Herrera G, Tampella G, Pan-Hammarström Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.PubMedCrossRefGoogle Scholar
  84. 84.
    Gámez-Díaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG, Noriko M, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137(1):223–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Kostel Bal S, Haskologlu S, Serwas NK, Islamoglu C, Aytekin C, Kendirli T, et al. Multiple presentations of LRBA deficiency: a single-center experience. J Clin Immunol. 2017;37(8):790–800.PubMedCrossRefGoogle Scholar
  86. 86.
    Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88–97.PubMedCrossRefGoogle Scholar
  87. 87.
    Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597–606.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Consonni F, Dotta L, Todaro F, Vairo D, Badolato R. Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr Opin Pediatr. 2017;29(6):711–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Lévy E, Stolzenberg MC, Bruneau J, Breton S, Neven B, Sauvion S, et al. LRBA deficiency with autoimmunity and early onset chronic erosive polyarthritis. Clin Immunol. 2016;168:88–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Revel-Vilk S, Fischer U, Keller B, Nabhani S, Gámez-Díaz L, Rensing-Ehl A, et al. Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clin Immunol. 2015;159(1):84–92.PubMedCrossRefGoogle Scholar
  91. 91.
    Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40.PubMedCrossRefGoogle Scholar
  92. 92.
    Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12(11):749–61.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Xu X, Ye L, Araki K, Ahmed R. mTOR, linking metabolism and immunity. Semin Immunol. 2012;24(6):429–35.PubMedCrossRefGoogle Scholar
  94. 94.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Weinacht KG, Charbonnier LM, Alrogi F, Plant A, Qiao Q, Wu H, et al. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol. 2017;139(5):1629–40.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46(8):812–4.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Haapaniemi EM, Kaustio M, Rajala HL, van Adrichem AJ, Kainulainen L, Glumoff V, et al. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood. 2015;125(4):639–48.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pederson A, Niemela JE, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591–999.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Forbes LR, Milner J, Haddad E. Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol. 2016;23(1):23–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nabhani S, Schipp C, Miskin H, Levin C, Postovsky S, Dujovny T, et al. STAT3 gain-of-function mutations associated with autoimmune lymphoproliferative syndrome like disease deregulate lymphocyte apoptosis and can be targeted by BH3 mimetic compounds. Clin Immunol. 2017;181:32–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Rensing-Ehl A, Warnatz K, Fuchs S, Schlesier M, Salzer U, Draeger R, et al. Clinical and immunological overlap between autoimmune lymphoproliferative syndrome and common variable immunodeficiency. Clin Immunol. 2010;137(3):357–65.PubMedCrossRefGoogle Scholar
  103. 103.
    Bleesing JJ, Brown MR, Straus SE, Dale JK, Siegel RM, Johnson M, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98(8):2466–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Caminha I, Fleisher TA, Hornung RL, Dale JK, Niemela JE, Price S, et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2010;125(4):946–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Iglesias J, Matamoros N, Raga S, Ferrer JM, Mila J. CD95 expression and function on lymphocyte subpopulations in common variable immunodeficiency (CVID); related to increased apoptosis. Clin Exp Immunol. 1999;117(1):138–46.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rao VK, Oliveira JB. How I treat autoimmune lymphoproliferative syndrome. Blood. 2011;118(22):5741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bride KL, Vincent T, Smith-Whitley K, Lambert MP, Bleesing JJ, Seif AE, et al. Sirolimus is effective in relapsed/refractory autoimmune cytopenias: results of a prospective multi-institutional trial. Blood. 2016;127(1):17–28.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Fan J, He H, Zhao W, Wang Y, Lu J, Li J, et al. Clinical features and treatment outcomes of childhood autoimmune hemolytic anemia: a retrospective analysis of 68 cases. J Pediatr Hematol Oncol. 2016;38(2):e50–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Teachey DT, Greiner R, Seif A, Attiyeh E, Bleesing J, Choi J, et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol. 2009;145(1):101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bussel JB, Cheng G, Saleh MN, Psaila B, Kovaleva L, Meddeb B, et al. Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N Engl J Med. 2007;357:2237–47.PubMedCrossRefGoogle Scholar
  111. 111.
    Kuter DJ, Bussel JB, Lyons RM, Pullarkat V, Gernsheimer TB, Senecal FM, et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet. 2008;371:395–403.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Bader-Meunier B, Aladjidi N, Bellmann F, Monpoux F, Nelken B, Robert A, et al. Rituximab therapy for childhood Evans syndrome. Haematologica. 2007;92(12):1691–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Ducassou S, Leverger G, Fernandes H, Chambost H, Bertrand Y, Armari-Alla C, et al. Benefits of rituximab as a second-line treatment for autoimmune haemolytic anaemia in children: a prospective French cohort study. Br J Haematol. 2017;177(5):751–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Rituxan (rituximab) package insert. South San Francisco, CA: Genentech; 2013.Google Scholar
  115. 115.
    Miano M, Ramenghi U, Russo G, Rubert L, Barone A, Tucci F, et al. Mycophenolate mofetil for the treatment of children with immune thrombocytopenia and Evans syndrome. A retrospective data review from the Italian association of paediatric haematology/oncology. Br J Haematol. 2016;175(3):490–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Rao VK, Dugan F, Dale JK, Davis J, Tretler J, Hurley JK, et al. Use of mycophenolate mofetil for chronic, refractory immune cytopenias in children with autoimmune lymphoproliferative syndrome. Br J Haematol. 2005;129(4):534–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Bussel JB, Provan D, Shamsi T, Cheng G, Psaila B, Kovaleva L, et al. Effect of Eltrombopag on platelet counts and bleeding during treatment of chronic idiopathic thrombocytopenic purpura: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373:641–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Cheng G, Saleh MN, Marcher C, Vasey S, Mayer B, Aivado M, et al. Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomised, phase 3 study. Lancet. 2011;377:393–402.PubMedCrossRefGoogle Scholar
  119. 119.
    Bussel JB, Saleh MN, Vasey SY, Mayer B, Arning M, Stone NL. Repeated short-term use of eltrombopag in patients with chronic immune thrombocytopenia (ITP). Br J Haematol. 2013;160:538–46.PubMedCrossRefGoogle Scholar
  120. 120.
    Saleh MN, Bussel JB, Cheng G, Meyer O, Bailey CK, Arning M, et al. Safety and efficacy of eltrombopag for treatment of chronic immune thrombocytopenia: results of the long-term, open-label EXTEND study. Blood. 2013;121:537–45.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kuter DJ, Rummel M, Boccia R, Macik G, Pabinger I, Selleslag D, et al. Romiplostim or standard of care in patients with immune thrombocytopenia. N Engl J Med. 2010;363(20):1889–99.PubMedCrossRefGoogle Scholar
  122. 122.
    Rodeghiero F, Stasi R, Giagounidis A, Viallard JF, Godeau B, Pabinger I, et al. Long-term safety and tolerability of romiplostim in patients with primary immune thrombocytopenia: a pooled analysis of 13 clinical trials. Eur J Haematol. 2013;91:423–36.PubMedCrossRefGoogle Scholar
  123. 123.
    Neven B, Magerus-Chatinet A, Florkin B, Gobert D, Lambotte O, De Somer L, et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118(18):4798–807.PubMedCrossRefGoogle Scholar
  124. 124.
    Neven B, Bruneau J, Stolzenberg MC, Meyts I, Magerus-Chatinet A, Moens L, et al. Defective anti-polysaccharide response and splenic marginal zone disorganization in ALPS patients. Blood. 2014;124(10):1597–609.PubMedCrossRefGoogle Scholar
  125. 125.
    Price S, Shaw PA, Seitz A, Joshi G, Davis J, Niemela JE, et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood. 2014;123(13):1989–99.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lee S, Moon JS, Lee CR, Kim HE, Baek SM, Hwang S, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol. 2016;137(1):327–30.PubMedCrossRefGoogle Scholar
  127. 127.
    Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol. 2017;139(3):715–23.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Rao VK, Webster S, Dalm VASH, Sedivá A, van Hagen PM, Holland S, et al. Effective ‘Activated PI3Kδ Syndrome’-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood. 2017;130(21):2307–16.  https://doi.org/10.1182/blood-2017-08-801191. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  129. 129.
    Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rösen-Wolff A, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98(1):194–200.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Baylor College of Medicine, Texas Children’s HospitalHoustonUSA

Personalised recommendations