Advertisement

Open Source Social Network Simulator Focusing on Spatial Meme Diffusion

  • Xinyue Ye
  • Lanxue Dang
  • Jay Lee
  • Ming-Hsiang Tsou
  • Zhuo Chen
Chapter
Part of the Human Dynamics in Smart Cities book series (HDSC)

Abstract

It is crucial to discover, track, summarize, and even predict popular topics and events occurring in the social network in the space-time context. At the same time, it is very useful that a series of “what if” scenarios can be developed to estimate the meme diffusion. However, spatial social scientists have been slow to adopt and implement new methods for social media data analysis due to the lack of open source software packages, which become a major impediment to the promotion of human dynamics research. The availability and widespread use of source codes will play a critical role in the adoption of new perspectives and ideas enhancing spatial social network analytics. The proposed Open Source Social Network Simulator implements the methodological advances in an open source environment of Python for exploring spatial meme diffusion, using twitter data as the case study. The methods are built in open source environments and thus are easily extensible and customizable. The open source movement can also facilitate the explosion of the social media analytics routines by increasingly easier development processes with powerful scripting language environments.

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1416509 and 1637242.

References

  1. Allaway, A. W., Berkowitz, D., & D’Souza, G. (2003). Spatial diffusion of a new loyalty program through a retail market. Journal of Retailing, 79(3), 137–151.CrossRefGoogle Scholar
  2. Allaway, A. W., Black, W. C., Richard, M. D., & Mason, J. B. (1994). Evolution of a retail market area: An event history model of spatial diffusion. Economic Geography, 70(1), 23–40.CrossRefGoogle Scholar
  3. Bailey, N. (1975). The mathematical theory of infectious diseases and its applications. London: Charles Griffin & Company Ltd.Google Scholar
  4. Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012, April). The role of social networks in information diffusion. In Proceedings of the 21st International Conference on World Wide Web (pp. 519–528). ACM.Google Scholar
  5. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.CrossRefGoogle Scholar
  6. Barrat, A., & Weigt, M. (2000). On the properties of small-world network models. The European Physical Journal B-Condensed Matter and Complex Systems, 13(3), 547–560.CrossRefGoogle Scholar
  7. Baybeck, B., & Huckfeldt, R. (2002). Urban contexts, spatially dispersed networks, and the diffusion of political information. Political Geography, 21(2), 195–220.CrossRefGoogle Scholar
  8. Budak, C., Agrawal, D., & Abbadi, A. E. (2011). Limiting the spread of misinformation in social networks. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11).Google Scholar
  9. Cao, N., et al. (2012). Whisper: tracing the spatiotemporal process of information diffusion in real time. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2649–2658.CrossRefGoogle Scholar
  10. Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.CrossRefGoogle Scholar
  11. Chesterman, A. (2016). Memes of translation: The spread of ideas in translation theory (Vol. 123). Amsterdam: John Benjamins Publishing Company.CrossRefGoogle Scholar
  12. Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111.CrossRefGoogle Scholar
  13. Doo, M. (2012). Spatial and social diffusion of information and influence: Models and algorithms (Doctoral dissertation, Georgia Institute of Technology).Google Scholar
  14. Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5(17–61), 43.Google Scholar
  15. Granovetter, M. S. (1987). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1443.CrossRefGoogle Scholar
  16. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.CrossRefGoogle Scholar
  17. Goldenberg, J., Libai, B., & Muller, E. (2001). Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12(3), 211–223.CrossRefGoogle Scholar
  18. Gregory, D., & Urry, J. (1985). Suspended animation: The stasis of diffusion theory. In D. Gregory & J. Urry (Eds.), Social relations and spatial structures (pp. 296–336). New York: St. Martin’s Press.CrossRefGoogle Scholar
  19. Guille, A., & Hacid. H. (2012). A predictive model for the temporal dynamics of information diffusion in online social networks. In WWW ’12 Companion (pp. 1145–1152).Google Scholar
  20. Hägerstrand, T. (1967). Aspects of the spatial structure of social, communication and the diffusion of information. Papers in Regional Science, 16(1), 27–42.CrossRefGoogle Scholar
  21. Hanneman, R. E. (2000). Introduction to social network methods. Online textbook supporting sociology 157. Riverside, CA: University of California.Google Scholar
  22. Hu, Y., Ye, X., & Shaw, S. L. (2017). Extracting and analyzing semantic relatedness between cities using news articles. International Journal of Geographical Information Science, 31(12), 2427–2451.CrossRefGoogle Scholar
  23. Kempe, D., Kleinberg, J., & Tardos, E. (2003). Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’03). Google Scholar
  24. Knoke, D. (1982). The spread of municipal reform: Temporal, spatial, and social dynamics. American Journal of Sociology, 87(6), 1314–1339.CrossRefGoogle Scholar
  25. Lancichinetti, A., Radicchi, F., Ramasco, J. J., & Fortunato, S. (2011). Finding statistically significant communities in networks. PLoS ONE, 6(4), e18961.CrossRefGoogle Scholar
  26. Lee, J., Lay, J. G., Chin, W. C. B., Chi, Y. L., & Hsueh, Y. H. (2014). An experiment to model spatial diffusion process with nearest neighbor analysis and regression estimation. International Journal of Applied Geospatial Research, 5(1), 1–15.CrossRefGoogle Scholar
  27. Lee, J., & Ye, X. (2018). An open source spatiotemporal model for simulating obesity prevalence. In GeoComputational Analysis and Modeling of Regional Systems (pp. 395–410). Cham: Springer.Google Scholar
  28. Liang, Y., Caverlee, J., Cheng, Z., & Kamath, K. Y. (2013). How big is the crowd? Event and location based population modeling in social media. In Proceedings of the 24th ACM Conference on Hypertext and Hypermedia. Paris, France.Google Scholar
  29. Li, M., Ye, X., Zhang, S., Tang, X., & Shen, Z. (2017). A framework of comparative urban trajectory analysis. Environment and Planning B.  https://doi.org/10.1177/2399808317710023.
  30. Li, S., Ye, X., Lee, J., Gong, J., & Qin, C. (2016). Spatiotemporal analysis of housing prices in China: A big data perspective. Applied Spatial Analysis and Policy.  https://doi.org/10.1007/s12061-016-9185-3.Google Scholar
  31. Morrill, R., Gaile, G. L., & Thrall, G. I. (1988). Spatial diffusion. SAGE scientific geography series 10. Newbury Park, CA: SAGE Publications, Inc.Google Scholar
  32. Newman, M. E. (2008). The mathematics of networks. The New Palgrave Encyclopedia of Economics, 2(2008), 1–12.Google Scholar
  33. Newman, M. E. J. (2003). The structure and function of complex networks. Society for Industrial and Applied Mathematics (SIAM) Review, 45(2), 167–256.Google Scholar
  34. Newman, M. E. J., Forrest, S., & Balthrop, J. (2002). Email networks and the spread of computer viruses. Physical Review, 66(3), 035101.CrossRefGoogle Scholar
  35. Romero, D. M., Tan. C., & Ugander, J. (2013). On the interplay between social and topical structure. In Proceedings of AAAI International Conference on Weblogs and Social Media (pp. 516–525).Google Scholar
  36. Romero, D. M., Galuba, W., Asur, S., & Huberman, B. A. (2011, March). Influence and passivity in social media. In Proceedings of the 20th international conference companion on World wide web (pp. 18–33). ACM.Google Scholar
  37. Scott, J. (2012). Social network analysis. UK: Sage.Google Scholar
  38. Shaw, S., Tsou, M., & Ye, X. (2016). Human dynamics in the mobile and big data era. International Journal of Geographical Information Science, 30(9), 1687–1693.CrossRefGoogle Scholar
  39. Spitzberg, B. H. (2014). Toward a model of meme diffusion (M3D). Communication Theory, 24(3), 311–339.CrossRefGoogle Scholar
  40. Sui, D. (2014). Opportunities and impediments for open GIS. Transactions in GIS, 18(1), 1–24.CrossRefGoogle Scholar
  41. Wang, F., Wang, H., & Xu, K. (2012). Diffusive logistic model towards predicting information diffusion in online social networks. In ICDCS ’12 Workshops (pp. 133–139).Google Scholar
  42. Wang, S. (2016). CyberGIS and spatial data science. GeoJournal.  https://doi.org/10.1007/s10708-016-9740-0.Google Scholar
  43. Wang, Y. D., Fu, X. K., Jiang, W., Wang, T., Tsou, M. H., & Ye, X. (2017). Inferring urban air quality based on social media. Computers, Environment and Urban Systems, 66, 110–116.CrossRefGoogle Scholar
  44. Wang, Z., & Ye, X. (2017). Social media analytics for natural disaster management. International Journal of Geographical Information Science.  https://doi.org/10.1080/13658816.2017.1367003.Google Scholar
  45. Wang, Z., Ye, X., & Tsou, M. (2016). Spatial, temporal, and content analysis of Twitter for wildfire hazards. Natural Hazards.  https://doi.org/10.1007/s11069-016-2329-6.Google Scholar
  46. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.CrossRefGoogle Scholar
  47. Weng, L., Menczer, F., & Ahn, Y.-Y. (2013). Virality prediction and community structure in social networks. Scientific Reports, 3, 2522.CrossRefGoogle Scholar
  48. Yang, J., & Counts, S. (2010). Predicting the speed, scale, and range of information diffusion in Twitter. In 4th International AAAI Conference on Weblogs and Social Media (ICWSM).Google Scholar
  49. Yang, J., & Leskovec, J. (2010). Modeling information diffusion in implicit networks. In ICDM ’10: IEEE International Conference On Data Mining, 2010.Google Scholar
  50. Ye, X. (2017). Open data and open source GIS, In Huang, B. (Ed.), Comprehensive geographic information systems (Vol. 1, pp. 42–49). Oxford: Elsevier.  https://doi.org/10.1016/b978-0-12-409548-9.09592-0.
  51. Ye, X., Li, S., Yang, X., Lee, J., & Wu, L. (2018). The fear of Ebola: A tale of two cities in China. In Big data support of urban planning and management (pp. 113–132). Cham: Springer.Google Scholar
  52. Ye, X., & Lee, J. (2016). Integrating geographic activity space and social network space to promote healthy lifestyles. ACMSIGSPATIAL Health GIS., 8(1), 24–33.Google Scholar
  53. Ye, X., & Rey, S. J. (2013). A framework for exploratory space-time analysis of economic data. Annals of Regional Science, 50(1), 315–339.CrossRefGoogle Scholar
  54. Zhang, J., Liu, X., & Tong, Z. (2012). Natural disaster risk assessment using information diffusion and geographical information system. In: Lu, J., Jain, L., & Zhang, G. (Eds.), Handbook on decision making (pp. 309–330). Berlin, Heidelberg: Springer.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Xinyue Ye
    • 1
  • Lanxue Dang
    • 2
  • Jay Lee
    • 1
  • Ming-Hsiang Tsou
    • 3
  • Zhuo Chen
    • 1
  1. 1.Department of GeographyKent State UniversityKentUSA
  2. 2.Department of Computer ScienceHenan UniversityKaifengChina
  3. 3.Department of GeographySan Diego State UniversitySan DiegoUSA

Personalised recommendations