Advertisement

Small Universal Reversible Counter Machines

  • Artiom Alhazov
  • Sergey Verlan
  • Rudolf Freund
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 30)

Abstract

A k-counter machine (CM(k)) is an automaton with k counters as an auxiliary memory. It is known that CM(k) are universal for \(k\ge 2\). As shown by Morita reversible CM(2) are universal. Based on results from Korec we construct four small universal reversible counter machines highlighting different trade-offs: (10, 109, 129), (11, 227, 270), (9, 97, 116) and (2, 1097, 1568), where in parentheses we indicated the number of counters, states and instructions, respectively. Since counter machines are used in many areas, our results can be the starting point for corresponding reversible universal constructions.

References

  1. 1.
    Alhazov, A., Ivanov, S., Pelz, E., Verlan, S.: Small universal deterministic Petri nets with inhibitor arcs. J. Autom. Lang. Comb. 21(1–2), 7–26 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M. (ed.) Foundations of Software Science and Computational Structures - 14th International Conference, FOSSACS 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6604, pp. 42–56. Springer (2011)Google Scholar
  3. 3.
    Barzdin, I.M.: Ob odnom klasse machin Turinga (machiny Minskogo), russian. Algebra i Logika 1, 42–51 (1963)Google Scholar
  4. 4.
    Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 44(1), 270–278 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ivanov, S., Pelz, E., Verlan, S.: Small universal non-deterministic Petri nets with inhibitor arcs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) Descriptional Complexity of Formal Systems - 16th International Workshop, DCFS 2014, Turku, Finland, 5–8 Aug 2014. Proceedings, Lecture Notes in Computer Science, vol. 8614, pp. 186–197. Springer (2014)Google Scholar
  7. 7.
    Korec, I.: Small universal register machines. Theor. Comput. Sci. 168(2), 267–301 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory: Proceedings, Symposium in Pure Mathematics, Provelence, vol. 5, pp. 229–238 (1962)Google Scholar
  9. 9.
    Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood Cliffts (1967)zbMATHGoogle Scholar
  10. 10.
    Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci. 168(2), 303–320 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Morita, K.: Reversible cellular automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 231–257. Springer, Berlin (2012)CrossRefGoogle Scholar
  12. 12.
    Morita, K.: Universal reversible Turing machines with a small number of tape symbols. Fundam. Inform. 138(1–2), 17–29 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Neary, T., Woods, D.: The complexity of small universal Turing machines: a survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012: 38th Conference on Current Trends in Theory and Practice of Computer Science, Lecture Notes in Computer Science, vol. 7147, pp. 385–405. Springer (2012)Google Scholar
  14. 14.
    Rogozhin, Y.: Small universal Turing machines. Theor. Comput. Sci. 168(2), 215–240 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schroeppel, R.: A two counter machine cannot calculate 2N. AI Memos. MIT AI Lab (1972)Google Scholar
  16. 16.
    Shannon, C.E.: A universal Turing machine with two internal states. Autom. Stud. Ann. Math. Stud. 34, 157–165 (1956)MathSciNetGoogle Scholar
  17. 17.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines. J. ACM 8(4), 476–483 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Woods, D., Neary, T.: The complexity of small universal Turing machines: a survey. Theor. Comput. Sci. 410(4–5), 443–450 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer Science, Academy of Sciences of MoldovaChicsinăuMoldova
  2. 2.Université Paris Est, LACL (EA 4219), UPECCréteilFrance
  3. 3.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations