Skip to main content

Diffusive Phenomena in Dynamic Networks: A Data-Driven Study

  • Conference paper
  • First Online:
Complex Networks IX (CompleNet 2018)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

Everyday, ideas, information as well as viruses spread over complex social tissues described by our interpersonal relations. So far, the network contexts upon which diffusive phenomena unfold have usually been considered static, composed by a fixed set of nodes and edges. Recent studies describe social networks as rapidly changing topologies. In this work — following a data-driven approach — we compare the behaviors of classical spreading models when used to analyze a given social network whose topological dynamics are observed at different temporal granularities. Our goal is to shed some light on the impacts that the adoption of a static topology has on spreading simulations as well as to provide an alternative formulation of two classical diffusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.wise2012.cs.ucy.ac.cy/challenge.html

  2. 2.

    http://weibo.com

  3. 3.

    All methods were made available within the NDLib library: https://goo.gl/1tstvG.

References

  1. Szor, P.: Fighting computer virus attacks. In: USENIX (2004)

    Google Scholar 

  2. Havlin, S.: Phone infections. Science 324, 1023–1024 (2009)

    Article  Google Scholar 

  3. Burt, R.S.: Social contagion and innovation: cohesion versus structural equivalence. AJS 92, 1287–1335 (1987)

    Google Scholar 

  4. Rogers, E.M.: Diffusion of Innovations. (1962)

    Google Scholar 

  5. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theory Exp. 2011(11), (2011)

    Google Scholar 

  6. Tabourier, L., Libert, A.S., Lambiotte, R.: Predicting links in ego-networks using temporal information. EPJ Data Sci. 5(1), (2016)

    Google Scholar 

  7. Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. JMLR (2016)

    Google Scholar 

  8. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), (2012)

    Google Scholar 

  9. Gulyás, L., Kampis, G.: Spreading processes on dynamically changing contact networks. EPJ ST 222(6), (2013)

    Google Scholar 

  10. Liu, C., Zhang, Z.K.: Information spreading on dynamic social networks. Commun. Nonlinear Sci. Numer. Simul. 19(4), (2014)

    Google Scholar 

  11. Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information spreading. Phys. Rev. E 83(4), (2011)

    Google Scholar 

  12. Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schifanella, R., Menczer, F., Flammini, A.: The role of information diffusion in the evolution of social networks. In: SIGKDD KDD (2013)

    Google Scholar 

  13. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., Régis, C., Pinton, J.F., et al.: Simulation of an seir infectious disease model on the dynamic contact network of conference attendees. BMC Med. 9(1), 87 (2011)

    Article  Google Scholar 

  14. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: WOSN (2009)

    Google Scholar 

  15. Kermack, W.O., McKendrick, A.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115(772), (1927)

    Google Scholar 

Download references

Acknowledgments

This work is funded by the EU’s H2020 Program under the funding scheme “FETPROACT-1-2014: Global Systems Science (GSS),” grant agreement # 641191 CIMPLEX and under the scheme “INFRAIA-1-2014-2015: Research Infrastructures,” grant agreement # 654024 “SoBigData”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letizia Milli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milli, L., Rossetti, G., Pedreschi, D., Giannotti, F. (2018). Diffusive Phenomena in Dynamic Networks: A Data-Driven Study. In: Cornelius, S., Coronges, K., Gonçalves, B., Sinatra, R., Vespignani, A. (eds) Complex Networks IX. CompleNet 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-73198-8_13

Download citation

Publish with us

Policies and ethics