Governing Equations, from Dynamics to Statistics

Chapter

Abstract

This chapter provides an exhaustive presentation of governing equations for continuum fluid mechanics, along with main tools for turbulent flow analysis and modeling: statistical averaging, anisotropy description, Fourier space analysis and modal decomposition of turbulent motion. The use of Green functions to solve linear and nonlinear problems is also discussed, along with the general treatment of governing equations in a Lagrangian framework. Splitting of the solution in compressible flows via Helmholtz decomposition is presented. The optimal reference frame in Fourier space based on Craya’s decomposition, including helical mode decomposition, is extensively discussed. An introduction to turbulence modelling is given.

References

  1. Arad, I., Lvov, V.S., Proccaccia, I.: Correlations functions in isotropic and anisotropic turbulence: the role of the symmetry group. Phys. Rev. E 59, 6753–6765 (1999)ADSMathSciNetCrossRefGoogle Scholar
  2. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953)MATHGoogle Scholar
  3. Bayly, B.J., Holm, D.D., Lifschitz, A.: Three-dimensional stability of elliptical vortex columns in external strain flows. Philos. Trans. R. Soc. Lond. A 354, 895–926 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. Brown, G.L., Roshko, A.: Turbulent shear layers and wakes. J. Turbul. 13(51), 1–32 (2012)MathSciNetMATHGoogle Scholar
  5. Cambon, C.: Etude spectrale d’un champ turbulent incompressible soumis à des effets couplés de déformation et rotation imposés extérieurement. Université Lyon I, France, Thèse de Doctorat d’Etat (1982)Google Scholar
  6. Cambon, C., Jacquin, L.: Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295–317 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. Cambon, C., Rubinstein, R.: Anisotropic developments for homogeneous shear flows. Phys. Fluids 18, 085106 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. Cambon, C., Scott, J.F.: Linear and nonlinear models of anisotropic turbulence. Ann. Rev. Fluid Mech. 31, 1–53 (1999)ADSMathSciNetCrossRefGoogle Scholar
  9. Cambon, C., Teissèdre, C.: Application dres harmonioques sphériques à la représentation et au calcul des grandeurs cinématiques en turbulence homogène anisotrope. C. R. Acad. Sci. Paris t. 301, II(2), 65–68 (1985)Google Scholar
  10. Cambon, C., Jacquin, L., Lubrano, J.-L.: Towards a new Reynolds stress model for rotating turbulent flows. Phys. Fluids A 4, 812–824 (1992)ADSCrossRefMATHGoogle Scholar
  11. Cambon, C., Danaila, L., Godeferd, F.S., Scott, J.F.: Third-order statistics and the dynamics of strongly anisotropic turbulent flows. J. Turbul. 14(3), 121–160 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. Chandrasekhar, S.: Hydrodynamics and Hydrodynamic Stability. Dover, New York (1981)Google Scholar
  13. Constantin, P.: SIAM Rev. 36, 73 (1994)MathSciNetCrossRefGoogle Scholar
  14. Craik, A.D.D., Criminale, W.O.: Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier-Stokes equations. Proc. R. Soc. Lond. Ser. A 406, 13–26 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. Craya, A.: Contribution à l’analyse de la turbulence associée à des vitesses moyennes. P.S.T. \(n^0\), vol. 345. Ministère de l’air. France (1958)Google Scholar
  16. Darrigol, O.: Worlds of Flow. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  17. Eringen, C.: Continuum Physics. Academic Press, New York, tome 1 (1971)Google Scholar
  18. Hopf, E.: Statistical hydrodynamics and functional calculus. J. Ration. Mech. Anal. 1, 87 (1952)MATHGoogle Scholar
  19. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, L21–L24 (2003)ADSCrossRefMATHGoogle Scholar
  20. Kassinos, S.C., Reynolds, W.C., Rogers, M.M.: One-point turbulence structure tensors. J. Fluid Mech. 428, 213–248 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. Kida, S., Orszag, S.A.: Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5(2), 85–125 (1990a)CrossRefMATHGoogle Scholar
  22. Kida, S., Orszag, S.A.: Enstrophy budget in decaying compressible turbulence. J. Sci. Comput. 5(1), 1–34 (1990b)MathSciNetCrossRefMATHGoogle Scholar
  23. Kida, S., Orszag, S.A.: Energy and spectral dynamics in decaying compressible turbulence. J. Sci. Comput. 7(1), 1–34 (1992)MathSciNetCrossRefMATHGoogle Scholar
  24. Kraichnan, R.H.: The structure of isotropic turbulence at very high Reynolds number. J. Fluid Mech. 5, 497–543 (1958)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. Kraichnan, R.H.: Direct-interaction approximation for shear and thermally driven turbulence. Phys. Fluids 7, 1048–1062 (1964)ADSMathSciNetCrossRefGoogle Scholar
  26. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)ADSCrossRefMATHGoogle Scholar
  27. Lindborg, E.: A note on Kolmogorov’s third-order structure-function law, the local isotropy hypothesis and the pressure-velocity correlation. J. Fluid Mech. 326, 343–356 (1996)Google Scholar
  28. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Radio Waves Propagation, pp. 166–167. NAUCA, Moscow (1967)Google Scholar
  29. Lumley, J.L.: Pressure strain correlations. Phys. Fluids 18(6), 750–751 (1975)ADSCrossRefGoogle Scholar
  30. Lumley, J.L.: Computation modelling of turbulent flows. Adv. Appl. Mech. 18, 126–176 (1978)Google Scholar
  31. Lumley, J.L., Newman, G.: The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82(1), 161–178 (1977)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. Lundgren, T.S.: Distribution function in the statistical theory of turbulence. Phys. Fluids 10(5), 969–975 (1967)ADSCrossRefGoogle Scholar
  33. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flows. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  34. Mathieu, J., Scott, J.F.: Turbulent Flows: An Introduction. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  35. Miura, H., Kida, S.: Acoustic energy exchange in compressible turbulence. Phys. Fluids 7(7), 1732–1742 (1995)ADSCrossRefMATHGoogle Scholar
  36. Monin, A.S.: Prikl. Mat. Mekh. 31, 1057 (1967)Google Scholar
  37. Mons, V., Cambon, C., Sagaut, P.: A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors. J. Fluid Mech. 788, 147–182 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. Novikov, E.A.: Sov. Phys.-Dokl. 12, 1006 (1968)ADSGoogle Scholar
  39. Oberlack, M.: Theories of Turbulence. Springer, Berlin (2001)Google Scholar
  40. Pereira, R.M., Garban, C., Chevillard, C.: A dissipative random velocity field for fully developed fluid turbulence. J. Fluid Mech. 794, 369–408 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. Piquet, J.: Turbulent Flows. Models and Physics, 2nd edn. Springer, Berlin (2001)Google Scholar
  42. Polyakov, A.: Turbulence without pressure. Phys. Rev. E 52(6), 6183–6188 (1995)ADSMathSciNetCrossRefGoogle Scholar
  43. Rieutord, M.: Linear theory of rotating fluids using spherical harmonics. Geophys. Astrophys. Fluid Dyn. 39, 163–182 (1987)ADSCrossRefMATHGoogle Scholar
  44. Riley, J.J., Metcalfe, R.W., Weissman, M.A.: In: West, B.J. (ed.) Proceedings of the AIP Conference on Nonlinear Properties of Internal Waves, pp. 72–112 (1981)Google Scholar
  45. Rogallo, R.: Numerical experiments in homogeneous turbulence, NASA Technical Memorandum, No 81315 (1981)Google Scholar
  46. Rubinstein, R., Kurien, S., Cambon, C.: Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence. J. Turbul. 16(11), 1058–1075 (2015)ADSMathSciNetCrossRefGoogle Scholar
  47. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  48. Simonsen, A.J., Krogstad, P.A.: Turbulent stress invariant analysis: clarification of existing terminology. Phys. Fluids 17, 088103 (2005)ADSCrossRefMATHGoogle Scholar
  49. Smith, L.M., Waleffe, F.: Generation of slow, large scales in forced rotating, stratified turbulence. J. Fluid Mech. 451, 145–168 (2002)ADSCrossRefMATHGoogle Scholar
  50. Sreenivasan, K.R., Narashima, R.: Rapid distortion theory of axisymmetric turbulence. J. Fluid Mech. 84, 497–516 (1978)ADSCrossRefMATHGoogle Scholar
  51. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. The MIT Press, Cambridge (1972)MATHGoogle Scholar
  52. Thomson, D.J.: Criteria for the selection of stochastic-models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529–556 (1987)ADSCrossRefMATHGoogle Scholar
  53. Waleffe, F.: The nature of triad interactions in homogeneous turbulence. Phys. Fluids 4, 350–363 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  54. Waclawczyk, et al.: Statistical symmetries of the Lundgren-Monin-Novikov hierarchy. Phys. Rev. E 90, 013022 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Modélisation et Procédés Propres, UMR CNRS 7340, Ecole Centrale de MarseilleAix-Marseille UniversitéMarseilleFrance
  2. 2.Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509Ecole Centrale de LyonÉcullyFrance

Personalised recommendations