Incompressible Homogeneous Anisotropic Turbulence: Buoyancy Force and Mean Stratification

Chapter

Abstract

This chapter deals with buoyancy effects and mean stratification. Under Boussinesq approximation, the fluctuating velocity field remains divergence-free, but a new buoyancy can fluctuate, as an active scalar. The case of stable stratification shows how gravity waves coexist with a vortex (toroidal) mode of motion. Experiments are presented, as well as models ranging from Reynolds Stress Models (e.g. Two-Component-Limit) to Rapid Distortion Theory and EDQNM incorporationg it. Then recent very promising results on unstable stratification are discussed, with applications ranging from geophysics to inertial fusion. Unprecedented quantitative comparisons between anisotropic EDQNM and very high resolution DNS are reported. The scale-by-scale return to isotropy is investigated, and it is shown that the re-isotropization at scales smaller than an Ozmidov scale is only obtained at very high Reynolds number, far beyond those reached by DNS, and only obtained by anisotropic EDQNM. The case of Unstably Stratified Homogeneous Turbulence is extended to the inhomogeneous case of Rayleigh-Taylor turbulence and suggests a system approach to turbulence, with an elaborate nonlinear model of fluctuating to fluctuating interactions, towards high Reynolds numbers.

References

  1. Bartello, P.: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52(24), 4410–4428 (1995)ADSMathSciNetCrossRefGoogle Scholar
  2. Billant, P., Chomaz, J.M.: Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 418, 167–188 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. Billant, P., Chomaz, J.M.: Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 1645–1651 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. Boussinesq, J: Théorie analytique de la chaleur, mise en harmonie avec la thermodynamique et la théorie mécanique de la lumière, Paris, Gauthier-Villars (two vols.) (1876)Google Scholar
  5. Brethouwer, G., Billant, P., Lindborg, E., Chomaz, J.M.: Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343–368 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. Briard, A., Gomez, T., Cambon, C.: Spectral modeling for passive scalar dynamics in homogeneous anisotropic turbulence. J. Fluid Mech. 799, 159–199 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. Briard, A., Iyer, M., Gomez, T.: Anisotropic spectral modeling for unstably stratified homogeneous turbulence. Phys. Rev. Fluids 2, 044604 (2017)ADSCrossRefGoogle Scholar
  8. Burlot, A., Gréa, B.-J., Godeferd, F.S., Cambon, C., Griffond, J.: Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence. J. Fluid Mech. 765, 17–44 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. Burlot, A., Gréa, B.-J., Godeferd, F.S., Cambon, C., Soulard, O.: Large Reynolds number self-similar states of unstably stratified homogeneous turbulence. Phys. Fluids 27, 065114 (2005)ADSCrossRefGoogle Scholar
  10. Cambon, C., Jacquin, L.: Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295–317 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. Cambon, C., Scott, J.F.: Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech. 31, 1–53 (1999)ADSMathSciNetCrossRefGoogle Scholar
  12. Cambon, C.: Turbulence and vortex structures in rotating and stratified flows. Eur. J. Mech. B (fluids) 20, 489–510 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. Cambon, C., Godeferd, F.S., Kaneda, Y.: Phase-mixing and toroidal cascade in rotating and stratified flows. Congrès Français de Mécanique, Grenoble, August 27–31 (2007)Google Scholar
  14. Cambon, C., Gréa, B.-J.: The role of directionality on the structure and dynamics of strongly anisotropic turbulent flows. J. Turbul. 14–1, 50–71 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. Cambon, C., Mons, V., Gréa, B.-J., Rubinstein, R.: Anisotropic triadic closures for shear-driven and buoyancy-driven turbulent flows. Comput. Fluids 151, 73–84 (2017)MathSciNetCrossRefGoogle Scholar
  16. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover Publications, inc, New York (1981)Google Scholar
  17. Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971)ADSCrossRefGoogle Scholar
  18. Cho, J. Y. N., Lindborg, E.: Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. Observations. J. Geophys. Res., 106 (D–10), 10223–10232 (2001)Google Scholar
  19. Cook, A., Cabot, W.: Reynolds number effects on Rayleigh-Taylor instability with possible implications for type-ia supernovae. Nat. Phys. 2, 562–568 (2006)CrossRefGoogle Scholar
  20. Craft, T.J., Launder, B.E.: Application of TCL modelling to stratified flows. In: Launder B., Sandham N. (eds.) Closure strategies for Turbulent and Transitional Flows. Cambridge University Press, Cambridge (2002)Google Scholar
  21. Fjortoft, R.: On the changes in the spectral distribution of kinetic energy for two-dimensional, non-divergent flows. Tellus 5, 225–230 (1953)ADSMathSciNetCrossRefGoogle Scholar
  22. Galperin, B., Sukoriansky, S.: Turbulence in rotating fluids and the Nastrom and Gage spectrum. In: Invited talk Sixth International Conference Turbulence Mixing and Beyond, ICTP, Trieste (Italy), 14–18 August (2017)Google Scholar
  23. Godeferd, F.S., Cambon, C.: Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6, 2084–2100 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. Godeferd, F.S., Staquet, C.: Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J. Fluid Mech. 486, 115–159 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. Gonzalez, M.: Kinematic properties of passive scalar gradient predicted by a stochastic Lagrangian model. Phys. Fluids 21, 055104 (2009)ADSCrossRefMATHGoogle Scholar
  26. Gréa, B.-J.: The rapid acceleration model and growth rate of a turbulent mixing zone induced by Rayleigh-Taylor instability. Phys. Fluids 25, 015118 (2013)ADSCrossRefGoogle Scholar
  27. Gréa, B.-J., Burlot, A., Godeferd, F.S., Soulard, O., Griffond, J., Cambon, C.: Dynamics and structure of unstably stratified homogeneous turbulence. J. Turbul. 17, 651–663 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. Herring, J.R., Métais, O.: Numerical experiments in forced stably-stratified turbulence. J. Fluid Mech. 25, 505–534 (1989)Google Scholar
  29. Kimura, Y., Herring, J.R.: J. Fluid Mech. 328, 253–269 (1996)ADSCrossRefGoogle Scholar
  30. Lelong, M.P., Riley, J.J.: Internal wave-vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 1–19 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. Liechtenstein, L., Godeferd, F.S., Cambon, C.: Nonlinear formation of structures in rotating stratified turbulence. J Turbul. 6, 1–18 (2005)MathSciNetCrossRefMATHGoogle Scholar
  32. Lilly, D.K.: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749–761 (1983)ADSCrossRefGoogle Scholar
  33. Lindborg, E.: The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242 (2006)ADSCrossRefMATHGoogle Scholar
  34. Lindborg, E., Cho, J.Y.N.: Horizontal velocity structure functions in the upper troposphere and lower stratosphere 2. Theoretical considerations. J. Geophys. Res., 106(D–10), 10233–10241 (2001)Google Scholar
  35. Marino, R., Mininni, P.D., Rosenberg, D.L., Pouquet, A.: Large-scale anisotropy in stably stratified rotating flows. Phys. Rev. E 90, 023018 (2014)ADSCrossRefGoogle Scholar
  36. Miles, J.W.: On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508 (1961)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. Mons, V., Cambon, C., Sagaut, P.: A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors. J. Fluid Mech. 788, 147–182 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. Mowbray, D.E., Rarity, B.S.H.: A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech. 28, 1–16 (1967)ADSCrossRefGoogle Scholar
  39. Nastrom, G.D., Gage, K.S.: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42, 950–960 (1985)ADSCrossRefGoogle Scholar
  40. Orszag, S.A.: Analytical theories of turbulence. J. Fluid Mech. 41, 363–386 (1970)ADSCrossRefMATHGoogle Scholar
  41. Otheguy, P., Billant, P., Chomaz, J.M.: Effect of the planetary rotation on the zig-zag instability of co-rotating vortices in a stratified fluid. J. Fluid Mech. 553, 273–281 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. Pedlowsky, J.: Geophysical Fluid Dynamics, Springer, Berlin (1987)Google Scholar
  43. Poujade, O.: Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime. Phys. Rev. Lett. 97, 185002 (2006)ADSCrossRefGoogle Scholar
  44. Poujade, O., Peybernes, M.: Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach. Phys. Rev. E 81, 016316 (2010)ADSCrossRefGoogle Scholar
  45. Praud, O., Fincham, A.M., Sommeria, J.: Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech. 522, 1–33 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  46. Praud, O., Sommeria, J., Fincham, A.M.: Decaying grid turbulence in a rotating stratified fluid. J. Fluid Mech. 547, 389–412 (2006)ADSCrossRefMATHGoogle Scholar
  47. Rayleigh, L.: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. s1–14(1), 170–177 (1982)Google Scholar
  48. Riley, J.J., deBruynKops.: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 2047–2059 (2003)Google Scholar
  49. Riley, J.J., Metcalfe, R.W., Weissman, M.A.: Proceedings of the AIP Conference on Nonlinear Properties of Internal Waves (Ed. B.J. West), 72–112 (1981)Google Scholar
  50. Salhi, A., Cambon, C.: Anisotropic phase-mixing in homogeneous turbulence in a rapidly rotating or in a strongly stratified fluid: an analytical study. Phys. Fluids 19, 055102 (2007)ADSCrossRefMATHGoogle Scholar
  51. Sharp, D.H.: An overview of Rayleigh-Taylor instability. Physica D: Nonlinear phenomena 12(1-3), 3–18 (1984)ADSCrossRefMATHGoogle Scholar
  52. Skamarock, W.C., Park, S.-H., Klemp, J.B., Snyder, C.: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci. 71, 4369–4381 (2014)ADSCrossRefGoogle Scholar
  53. Smith, L.M., Waleffe, F.: Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145–168 (2002)ADSCrossRefMATHGoogle Scholar
  54. Soulard, O., Griffond, J., Gréa, B.-J.: Large-scale analysis of self-similar unstably stratified homogeneous turbulence. Phys. Fluids 26, 015110 (2014)ADSCrossRefGoogle Scholar
  55. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201(1065), 192–196 (1950)ADSMathSciNetCrossRefMATHGoogle Scholar
  56. Waleffe, F.: The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4(2), 350–363 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  57. Youngs, D.L.: Numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Physica D 12(1–3), 32–44 (1984)ADSCrossRefGoogle Scholar
  58. Youngs, D.L.: Numerical simulation of mixing by Rayleigh-Taylor and Richtmeyer-Meshkov instabilities. Laser Part. Beams 12, 725 (1994)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Modélisation et Procédés Propres, UMR CNRS 7340, Ecole Centrale de MarseilleAix-Marseille UniversitéMarseilleFrance
  2. 2.Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509Ecole Centrale de LyonÉcullyFrance

Personalised recommendations