Compressed Sensing and Its Applications pp 263-290 | Cite as
Reconstruction Methods in THz Single-Pixel Imaging
- 576 Downloads
Abstract
The aim of this paper is to discuss some advanced aspects of image reconstruction in single-pixel cameras, focusing in particular on detectors in the THz regime. We discuss the reconstruction problem from a computational imaging perspective and provide a comparison of the effects of several state-of-the-art regularization techniques. Moreover, we focus on some advanced aspects arising in practice with THz cameras, which lead to nonlinear reconstruction problems: the calibration of the beam reminiscent of the Retinex problem in imaging and phase recovery problems. Finally, we provide an outlook to future challenges in the area.
Keywords
Single-pixel imaging Computational image reconstruction Calibration problems Phase recovery RetinexNotes
Acknowledgements
This work has been supported by the German research foundation (DFG) through SPP 1798, Compressed Sensing in Information Processing, projects BU 2327/4-1 and JU 2795/3. MB acknowledges further support by ERC via Grant EU FP7 ERC Consolidator Grant 615216 LifeInverse.
References
- 1.A. Ahmed, A. Aghasi, P. Hand, Blind deconvolutional phase retrieval via convex programming. CoRR (2018)Google Scholar
- 2.S. Augustin, S. Frohmann, P. Jung, H.-W. Hübers, An optically controllable 0.35 THz single-pixel camera for millimeter resolution imaging. In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2Google Scholar
- 3.S. Augustin, J. Hieronymus, P. Jung, H.-W. Hübers, Compressed sensing in a fully non-mechanical 350 ghz imaging setting. J. Infrared Millim. Terahertz Waves 36(5), 496–512 (2015)CrossRefGoogle Scholar
- 4.A. Ahmed, J. Romberg, B. Recht, Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.R.G. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)CrossRefGoogle Scholar
- 6.M. Benning, M. Burger, Modern regularization methods for inverse problems. Acta Numer. 27, 1–111 (2018)MathSciNetCrossRefGoogle Scholar
- 7.H.H. Bauschke, P.L. Combettes, D. Russell Luke. Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization. JOSA A, 19(7), 1334–1345 (2002)MathSciNetCrossRefGoogle Scholar
- 8.M. Burger, H. Dirks, C.-B. Schonlieb, A variational model for joint motion estimation and image reconstruction. SIAM J. Imaging Sci. 11(1), 94–128 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.A.M. Bruckstein, M. Elad, M. Zibulevsky, On the uniqueness of non-negative sparse & redundant representations, in IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp 5145–5148Google Scholar
- 10.B. Blaschke-Kaltenbacher, H.W. Engl, Regularization methods for nonlinear ill-posed problems with applications to phase reconstruction, in Inverse Problems in Medical Imaging and Nondestructive Testing (Springer, 1997), pp. 17–35Google Scholar
- 11.K. Bredies, K. Kunisch, T. Pock, Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.M. Burger, S. Osher. A guide to the tv zoo, in Level Set and PDE Based Reconstruction Methods in Imaging (Springer, 2013), pp 1–70Google Scholar
- 13.M. Burger, A. Sawatzky, G. Steidl, First order algorithms in variational image processing, in Splitting Methods in Communication, Imaging, Science, and Engineering (Springer, 2016), pp. 345–407Google Scholar
- 14.V. Caselles, A. Chambolle, M. Novaga, Total variation in imaging, in Handbook of Mathematical Methods in Imaging, pp. 1–39 (2014)Google Scholar
- 15.W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R.G. Baraniuk, D.M. Mittleman, A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93(12), 121105 (2008)CrossRefGoogle Scholar
- 16.E.J. Candes, X. Li, M. Soltanolkotabi, Phase retrieval via wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.E.J. Candes, Y. Plan, A probabilistic and ripless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.E.J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.E.J. Candes, T. Strohmer, V. Voroninski, Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.J.-F. Cai, W. Xu, Guarantees of total variation minimization for signal recovery. Inf. Inference 328–353 (2015)Google Scholar
- 22.D.L. Donoho, et al, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, R.G. Baraniuk, Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)CrossRefGoogle Scholar
- 24.H. Dirks, A flexible primal-dual toolbox. arXiv:1603.05835 [cs, math] (2016)
- 25.D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.M.P. Edgar, G.M. Gibson, M.J. Padgett, Principles and prospects for single-pixel imaging. Nat. Photonics 1 (2018)Google Scholar
- 27.H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, vol. 375, 1st edn. Springer Netherlands (2000)Google Scholar
- 28.Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge University Press (2012)Google Scholar
- 29.J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)CrossRefGoogle Scholar
- 30.S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing Appl. Numer. Harmon. Anal. Birkhäuser, Springer, New York (2013)zbMATHCrossRefGoogle Scholar
- 31.R. Gribonval, G. Chardon, L. Daudet, Blind calibration for compressed sensing by convex optimization, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2012), pp. 2713–2716Google Scholar
- 32.R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)Google Scholar
- 33.K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.B. Gao, X. Zhiqiang, Phaseless recovery using the Gauss-Newton method. IEEE Trans. Signal Process. 65(22), 5885–5896 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.K. Jaganathan, Y.C. Eldar, B. Hassibi, Phase retrieval: an overview of recent developments. arXiv preprint arXiv:1510.07713 (2015)
- 36.K. Jaganathan, Y.C. Eldar, B. Hassibi, Phase retrieval: an overview of recent developments, in Optical Compressive Imaging ed. by A. Stern (CRC Press, 2016) pp. 263–287Google Scholar
- 37.P. Jung, R. Kueng, D.G. Mixon, Derandomizing compressed sensing with combinatorial design. CoRR (2018)Google Scholar
- 38.P. Jung, F. Krahmer, D. Stoeger, B. Demixing, Deconvolution at near-optimal rate. IEEE Trans. Inf. Theory 64(2), 704–727 (2018)Google Scholar
- 39.R. Kimmel, M. Elad, D. Shaked, R. Keshet, I. Sobel, A variational framework for retinex. International Journal of Computer Vision 52(1), 7–23 (2003)CrossRefGoogle Scholar
- 40.R. Kueng, P. Jung, Robust nonnegative sparse recovery and the nullspace property of 0/1 measurements. IEEE Trans. Inf. Theory 64(2), 689–703 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.F. Krahmer, C. Kruschel, M. Sandbichler, Total variation minimization in compressed sensing, in Compressed Sensing and its Applications (Springer, 2017), pp. 333–358Google Scholar
- 42.G. Kutyniok, D. Labate, Shearlets: Multiscale analysis for multivariate data. Springer Science & Business Media (2012)Google Scholar
- 43.E.H. Land, The retinex. Am. Sci. 52(2), 247–264 (1964)Google Scholar
- 44.L. Weizhi, W. Li, K. Kpalma, J. Ronsin, Compressed sensing performance of random Bernoulli matrices with high compression ratio. IEEE Signal Process. Lett. 22(8), 1074–1078 (2015)CrossRefGoogle Scholar
- 45.X. Li, S. Ling, T. Strohmer, K. Wei, Rapid, robust, and reliable blind deconvolution via nonconvex optimization. Appl. Comput. Harmon. Anal. 1–49 (2018)Google Scholar
- 46.E.H. Land, J.J. McCann, Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1 (1971)CrossRefGoogle Scholar
- 47.S. Ling, T. Strohmer, Self-calibration and biconvex compressive sensing. Inverse Probl. 31(11) (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.S. Ling, T. Strohmer, Self-calibration and bilinear inverse problems via linear least squares. SIAM J. Imaging Sci. 11(1), 252–292 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.S. Marchesini, A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78(1), 011301 (2007)MathSciNetCrossRefGoogle Scholar
- 50.L. Nickel, Phase retrieval in single detector cameras. Master’s thesis, WWU Münster (2018)Google Scholar
- 51.M.K. Ng, W. Wang, A total variation model for retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.D. Needell, R. Ward, Near-optimal compressed sensing guarantees for total variation minimization. IEEE Trans. Image Process. 22(10), 3941–3949 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.D. Needell, R. Ward, Stable image reconstruction using total variation minimization. SIAM J. Imaging Sci. 6(2), 1035–1058 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 54.C. Poon, On the role of total variation in compressed sensing. SIAM J. Imaging Sci. 8(1), 682–720 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 55.Y. Shechtman, A. Beck, Y.C. Eldar, Gespar: Efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62(4), 928–938 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 56.M. Slawski, M. Hein, Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electron. J. Statist. 7, 3004–3056 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.R.J. Stokoe, P.A. Stockton, A. Pezeshki, R.A. Bartels, Theory and applications of structured light single pixel imaging, in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV, vol. 10499 (International Society for Optics and Photonics, 2018), p. 104990EGoogle Scholar
- 58.G. Wang, G.B. Giannakis, Y.C. Eldar, Solving systems of random quadratic equations via truncated amplitude flow. IEEE Trans. Inf. Theory 64(2), 773–794 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8(8), 605 (2014)CrossRefGoogle Scholar
- 60.M. Wang, X. Weiyu, A. Tang, A unique “nonnegative” solution to an underdetermined system: from vectors to matrices. IEEE Trans. Inform. Theory 59(3), 1007–1016 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 61.X. Zhang, M. Burger, S. Osher, A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)MathSciNetzbMATHCrossRefGoogle Scholar