Current Status of Mangrove Wetlands in Sinaloa: A Biological Corridor Along the Eastern Margin of the Gulf of California, México

  • Marlenne Manzano-SarabiaEmail author
  • Olivia Millán-Aguilar
  • Francisco Flores-Cárdenas
  • Lidia Rodríguez-Arredondo
  • Mayra I. Grano-Maldonado
  • Mario Nieves-Soto
Part of the Coastal Research Library book series (COASTALRL, volume 25)


The state of Sinaloa, located in northwestern Mexico, possesses significant mangrove coverage (ranked fourth in this country), which can be considered a biological corridor because of its ecological relevance for many resident and migratory species. Several ecosystem services are provided by mangrove wetlands; however, diverse drivers of change, mainly anthropogenic stressors, e.g. urban development, pollution, agricultural and aquaculture activities, have modified this large ecosystem during the last decades. It has been reported that Sinaloa has lost more than 5000 ha since 1985, yet the impacts on mangrove structure and functioning are still poorly understood. Furthermore, the frequency and intensity of climate phenomena like “El Niño” events might impact the phenology of mangroves in this region and deserve further studies. Bioaccumulation of contaminants, land cover change, aquaculture, hydrological changes, low and increasing temperature conditions and the impact of hurricanes on mangroves are discussed in this chapter in addition to recommendations for future studies, e.g. the impact of plagues and phytopathogens on mangroves in Sinaloa.


Mangroves NDVI Remote sensing Land cover change 



Authors acknowledge financial support provided by PROMEP UAS-NPTC UAS-PTC-039, PROFAPI 2011/100, 2012/098, 2013/106, Infraestructura-CONACyT 280994 and CONABIO LM004 grants.


  1. Aburto-Oropeza O, Ezcurra E, Danemann G, Valdez V, Murray J, Sala E (2008) Mangroves in the Gulf of California increse fishery yields. Environ Sci 105(30):10456–10459Google Scholar
  2. Alatorre LC, Sánchez-Carrillo S, Miramontes-Beltrán S, Medina RJ, Torres-Olave ME, Bravo LC, Wiebe LC, Granados A, Adams DK, Sánchez E, Mario U (2016) Temporal changes of NDVI for qualitative environmental assessment of mangroves: shrimp farming impact on the health decline of the arid mangroves in the Gulf of California (1990–2010). J Arid Environ 125:98–109CrossRefGoogle Scholar
  3. Brander L, Wagtendonkb AJ, Hussainc SS, McVittie A, Verburg PH, de Groot RS, van der Ploeg S (2012) Ecosystem service values for mangroves in Southeast Asia: a meta-analysis and value transfer application. Ecosyst Serv 1(1):62–69CrossRefGoogle Scholar
  4. Castro-Díaz J (2013) Commission for environmental cooperation an assessment of primary and secondary mercury supplies in Mexico. Commission for Environmental Cooperation, Quebec. 98pGoogle Scholar
  5. CONABIO (2008) Manglares de México. México. 38pGoogle Scholar
  6. CONAGUA (2015) Atlas del agua en México. Comisión Nacional del Agua, México. 137pGoogle Scholar
  7. Cooke GD, Welch EB, Peterson SA, Nichols SA (2005) Restoration and management of lakes and reservoirs, Third edn. CRC Press, Boca Raton. 616pGoogle Scholar
  8. Cresswell JE (1997) Spatial heterogeneity, pollinator behavior and pollinator-mediated gene flow: bumblebee movements in variously aggregated rows of oil-seed rape. Oikos 78:546–556CrossRefGoogle Scholar
  9. Delgado-Álvarez CG, Ruelas-Inzunza J, Osuna-López JI, Voltolina D, Frías-Espericueta MG (2015) Total mercury content in cultured oysters from NW Mexico: health risk assessment. Bull Environ Contam Toxicol 94(2):209–213CrossRefPubMedGoogle Scholar
  10. Doyle TW, Krauss KW, Wells CJ (2009) Landscape analysis and pattern of hurricane impact and circulation on mangrove forest of the everglades. Wetlands 29(1):44–53Google Scholar
  11. Drexler JZ, Ewel KC (2001) Effect of the 1997–1998 ENSO-related drought on hydrology and salinity in a micronesian wetland complex. Estuaries 24(3):347–356CrossRefGoogle Scholar
  12. Flores-Cárdenas F, Hurtado-Oliva MA, Doyle TW, Nieves-Soto M, Díaz-Castro S, Manzano-Sarabia M (2016) Litterfall production of mangroves in Huizache-Caimanero lagoon system, Mexico. J Coast Res 33(1):118–124Google Scholar
  13. Friedl G, Wüest A (2002) Disrupting biogeochemical cycles – consequences of damming. Aquat Sci 64(1):55–65CrossRefGoogle Scholar
  14. Green EP, Mumby PJ, Edwards AJ, Clark CD (2000) Remote sensing handbook for tropical coastal management. UNESCO Publishing, ParisGoogle Scholar
  15. Kovacs JM, Wang J, Blanco-Correa M (2001) Mapping disturbances in a mangrove forest using ulti-date Landsat TM imagery. Environ Manag 27(5):763–766CrossRefGoogle Scholar
  16. Lonard RI, Judd FW (1991) Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the Lower Rio Grande Valley, Texas. Southwest Nat 36:213–217CrossRefGoogle Scholar
  17. Millán-Aguilar O, Manzano-Sarabia M, Nettel-Hernanz A, Dodd RS, Hurtado-Oliva MÁ, Velázquez-Velázquez E (2016) Genetic Diversity of the Black Mangrove Avicennia germinans (L.) Stearn in Northwestern Mexico. Forests 7:197Google Scholar
  18. Morzaria-Luna HN, Castillo-López A, Danemann GD, Turk-Boyer P (2014) Conservation strategies for coastal wetlands in the Gulf of California, Mexico. Wetl Ecol Manag 22(3):267–288CrossRefGoogle Scholar
  19. Reef R, Ball M, Lovelock C (2012) The impact of a locust plague on mangroves of the arid Western Australia coast. J Trop Ecol 28(3):307–311CrossRefGoogle Scholar
  20. Rodríguez-Zúñiga MT, Troche-Souza C, Vázquez-Lule AD, Márquez-Mendoza JD, Vázquez-Balderas B, Valderrama-Landeros L, Velázquez-Salazar S, Uribe-Martínez A, Acosta-Velázquez J, Díaz-Gallegos J, Cruz-López MI, Ressl R (2012) Los manglares de México: estado actual y establecimiento de un programa de monitoreo a largo plazo: 2ª y 3era etapas, Informe final SNIB-CONABIO proyecto No. GQ004. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, MéxicoGoogle Scholar
  21. Rodríguez-Zúñiga MT, Troche-Souza C, Vázquez-Lule A, Márquez-Mendoza JD, Vázquez-Balderas B, Valderrama-Landeros L, Velázquez-Salazar S, Cruz-López MI, Ressl R, Uribe-Martínez A, Cerdeira-Estrada S, Acosta-Velázquez J, Díaz-Gallegos J, Jiménez-Rosenberg R, Fueyo-MacDonald L, Galindo-Leal C (2013) Manglares de México/Extensión, distribución y monitoreo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México. 128pCrossRefGoogle Scholar
  22. Rollet B (1974) Introduction a l’Etude des Mangroves du Mexique. Part 2. Rev Bois Forest Tropiques 157:53–74Google Scholar
  23. Sánchez-Martínez MA, Riosmena-Rodríguez R, Marmolejo-Rodríguez AJ, Sánchez-González A (2017) Trace elements in two wetland plants (Maytenus phyllanthoides and Salicornia subterminalis) and sediment in a semiarid area influenced by gold mining. Regi Stud Mar Sci 10:65–74CrossRefGoogle Scholar
  24. Smith TJ, Anderson GH, Balentine K, Tiling G, Ward GA, Whelan KRT (2009) Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29(1):24–34CrossRefGoogle Scholar
  25. Todd MC, Washington R, Cheke RA, Kniveton R (2002) Brown locust outbreaks and climate variability in southern Africa. J Appl Ecol 39:31–42CrossRefGoogle Scholar
  26. Tomlinson PB (1986) The botany of mangroves. Cambridge Univ. Press, Cambridge. 413pGoogle Scholar
  27. Twilley RR, Rivera-Monroy V (2009) Sediment and nutrient tradeoffs in restoring Mississippi River Delta: restoration vs eutrophication. J Contemp Water Res Educ 141(1):39–44CrossRefGoogle Scholar
  28. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815CrossRefGoogle Scholar
  29. Vega-Rodríguez M (2008) Estimating primary productivity of red mangroves in southwestern Puerto Rico from remote sensing and field measurements. Ms. Sci.Thesis. Puerto RicoGoogle Scholar
  30. Wanderley-Costa IPM, Costa-Maia L, Auxiliadora-Cavalcanti M (2012) Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Braz J Microbiol 43:1165–1173CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ward RD, Friess DA, Day RH, MacKenzie RA (2016) Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst Health Sustain 2(4):e01211CrossRefGoogle Scholar
  32. Yando ES, Osland MJ, Willis JM, Day RH, Krauss KW, Hester MW (2016) Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. Aust J Ecol 104:1020–1031CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marlenne Manzano-Sarabia
    • 1
    Email author
  • Olivia Millán-Aguilar
    • 1
  • Francisco Flores-Cárdenas
    • 1
  • Lidia Rodríguez-Arredondo
    • 1
  • Mayra I. Grano-Maldonado
    • 1
  • Mario Nieves-Soto
    • 1
  1. 1.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico

Personalised recommendations