Advertisement

Fighting with the Sparsity of Synonymy Dictionaries for Automatic Synset Induction

  • Dmitry Ustalov
  • Mikhail Chernoskutov
  • Chris Biemann
  • Alexander Panchenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10716)

Abstract

Graph-based synset induction methods, such as MaxMax and Watset, induce synsets by performing a global clustering of a synonymy graph. However, such methods are sensitive to the structure of the input synonymy graph: sparseness of the input dictionary can substantially reduce the quality of the extracted synsets. In this paper, we propose two different approaches designed to alleviate the incompleteness of the input dictionaries. The first one performs a pre-processing of the graph by adding missing edges, while the second one performs a post-processing by merging similar synset clusters. We evaluate these approaches on two datasets for the Russian language and discuss their impact on the performance of synset induction methods. Finally, we perform an extensive error analysis of each approach and discuss prominent alternative methods for coping with the problem of sparsity of the synonymy dictionaries.

Keywords

Lexical semantics Word embeddings Synset induction Synonyms Word sense induction Synset induction Sense embeddings 

Notes

Acknowledgements

We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) under the “JOIN-T” project, the DAAD, the RFBR under the projects no. 16-37-00203 Open image in new window and no. 16-37-00354 Open image in new window and the RFH under the project no. 16-04-12019. The research was supported by the Ministry of Education and Science of the Russian Federation Agreement no. 02.A03.21.0006. The calculations were carried out using the supercomputer “Uran” at the Krasovskii Institute of Mathematics and Mechanics. Finally, we also thank four anonymous reviewers for their helpful comments.

References

  1. 1.
    Biemann, C.: Chinese whispers: an efficient graph clustering algorithm and its application to natural language processing problems. In: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, pp. 73–80. TextGraphs-1. Association for Computational Linguistics, New York (2006)Google Scholar
  2. 2.
    Braslavski, P., Ustalov, D., Mukhin, M., Kiselev, Y.: YARN: spinning-in-progress. In: Proceedings of the 8th Global WordNet Conference (GWC 2016), pp. 58–65. Global WordNet Association, Bucharest (2016)Google Scholar
  3. 3.
    Van Dongen, S.: Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht (2000)Google Scholar
  4. 4.
    Dorow, B., Widdows, D.: Discovering corpus-specific word senses. In: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics (EACL 2003), vol. 2, pp. 79–82. Association for Computational Linguistics, Budapest (2003)Google Scholar
  5. 5.
    Fellbaum, C.: WordNet: An Electronic Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  6. 6.
    Feuerbach, T., Riedl, M., Biemann, C.: Distributional semantics for resolving bridging mentions. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, pp. 192–199. INCOMA Ltd., Shoumen, Hissar (2015)Google Scholar
  7. 7.
    Gfeller, D., Chappelier, J.C., De Los Rios, P.: Synonym dictionary improvement through markov clustering and clustering stability. In: Proceedings of the International Symposium on Applied Stochastic Models and Data Analysis, pp. 106–113, Brest, France (2005)Google Scholar
  8. 8.
    Gonçalo Oliveira, H., Gomes, P.: ECO and Onto.PT: a flexible approach for creating a Portuguese wordnet automatically. Lang. Resour. Eval. 48(2), 373–393 (2014)CrossRefGoogle Scholar
  9. 9.
    Gurevych, I., Kim, J. (eds.): The People’s Web Meets NLP: Collaboratively Constructed Language Resources. Theory and Applications of Natural Language Processing. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35085-6 Google Scholar
  10. 10.
    Herrmann, D.J.: An old problem for the new psycho-semantics: synonymity. Psychol. Bull. 85(3), 490–512 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Heylen, K., Peirsman, Y., Geeraerts, D., Speelman, D.: Modelling word similarity: an evaluation of automatic synonymy extraction algorithms. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008), pp. 3243–3249. European Language Resources Association, Marrakech (2008)Google Scholar
  12. 12.
    Hope, D., Keller, B.: MaxMax: a graph-based soft clustering algorithm applied to word sense induction. In: Gelbukh, A. (ed.) CICLing 2013. LNCS, vol. 7816, pp. 368–381. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37247-6_30 CrossRefGoogle Scholar
  13. 13.
    Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Comput. Linguist. 20(4), 535–561 (1994)Google Scholar
  14. 14.
    Loukachevitch, N.V.: Thesauri in Information Retrieval Tasks. Moscow University Press, Moscow (2011). (in Russian)Google Scholar
  15. 15.
    Loukachevitch, N.V., Lashevich, G., Gerasimova, A.A., Ivanov, V.V., Dobrov, B.V.: Creating Russian wordnet by conversion. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference “Dialogue”, pp. 405–415. RSUH, Moscow (2016)Google Scholar
  16. 16.
    Manandhar, S., Klapaftis, I., Dligach, D., Pradhan, S.: SemEval-2010 Task 14: word sense induction & disambiguation. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 63–68. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  17. 17.
    Meyer, C.M., Gurevyich, I.: OntoWiktionary: Constructing an Ontology from the Collaborative Online Dictionary Wiktionary, pp. 131–161. IGI Global, Hershey (2012)Google Scholar
  18. 18.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates Inc., Harrahs and Harveys (2013)Google Scholar
  19. 19.
    Navigli, R.: A quick tour of word sense disambiguation, induction and related approaches. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 115–129. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27660-6_10 CrossRefGoogle Scholar
  20. 20.
    Panchenko, A.: Comparison of the baseline knowledge-, corpus-, and web-based similarity measures for semantic relations extraction. In: Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics (GEMS 2011), pp. 11–21. Association for Computational Linguistics, Edinburgh (2011)Google Scholar
  21. 21.
    Panchenko, A., Adeykin, S., Romanov, A., Romanov, P.: Extraction of semantic relations between concepts with KNN algorithms on Wikipedia. In: Proceedings of the 2nd International Workshop on Concept Discovery in Unstructured Data, pp. 78–86, no. 871 in CEUR Workshop Proceedings, Leuven, Belgium (2012)Google Scholar
  22. 22.
    Panchenko, A., Morozova, O., Naets, H.: A semantic similarity measure based on lexico-syntactic patterns. In: Proceedings of KONVENS 2012, pp. 174–178, ÖGAI (2012)Google Scholar
  23. 23.
    Panchenko, A., Simon, J., Riedl, M., Biemann, C.: Noun sense induction and disambiguation using graph-based distributional semantics. In: Proceedings of the 13th Conference on Natural Language Processing (KONVENS 2016), pp. 192–202. Bochumer Linguistische Arbeitsberichte (2016)Google Scholar
  24. 24.
    Panchenko, A., Ustalov, D., Arefyev, N., Paperno, D., Konstantinova, N., Loukachevitch, N., Biemann, C.: Human and machine judgements for Russian semantic relatedness. In: Ignatov, D., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 221–235. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52920-2_21 CrossRefGoogle Scholar
  25. 25.
    Peirsman, Y., Heylen, K., Speelman, D.: Putting things in order. First and second order context models for the calculation of semantic similarity. In: Proceedings of the 9th Journées internationales d’Analyse statistique des Données Textuelles (JADT 2008), pp. 907–916, Lyon, France (2008)Google Scholar
  26. 26.
    Pelevina, M., Arefyev, N., Biemann, C., Panchenko, A.: Making sense of word embeddings. In: Proceedings of the 1st Workshop on Representation Learning for NLP, pp. 174–183. Association for Computational Linguistics, Berlin (2016)Google Scholar
  27. 27.
    Seitner, J., Bizer, C., Eckert, K., Faralli, S., Meusel, R., Paulheim, H., Ponzetto, S.P.: A large database of hypernymy relations extracted from the web. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 360–367. European Language Resources Association (ELRA), Portorož (2016)Google Scholar
  28. 28.
    Shwartz, V., Goldberg, Y., Dagan, I.: Improving hypernymy detection with an integrated path-based and distributional method. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, pp. 2389–2398. Association for Computational Linguistics, Berlin (2016)Google Scholar
  29. 29.
    Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hypernym discovery. In: Proceedings of the 17th International Conference on Neural Information Processing Systems (NIPS 2004), pp. 1297–1304. MIT Press, Vancouver (2004)Google Scholar
  30. 30.
    Ustalov, D., Panchenko, A., Biemann, C.: Watset: automatic induction of synsets from a graph of synonyms. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, pp. 1579–1590. Association for Computational Linguistics, Vancouver (2017)Google Scholar
  31. 31.
    Wandmacher, T.: How semantic is latent semantic analysis? In: Proceedings of RÉCITAL 2005. pp. 525–534, Dourdan, France (2005)Google Scholar
  32. 32.
    Zeng, X.M.: Semantic relationships between contextual synonyms. US-China Educ. Rev. 4(9), 33–37 (2007)Google Scholar
  33. 33.
    Zipf, G.K.: The Psycho-Biology of Language, Houghton, Mifflin, Oxford, England (1935)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dmitry Ustalov
    • 1
    • 2
  • Mikhail Chernoskutov
    • 1
    • 2
  • Chris Biemann
    • 3
  • Alexander Panchenko
    • 3
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Krasovskii Institute of Mathematics and MechanicsYekaterinburgRussia
  3. 3.Universität HamburgHamburgGermany

Personalised recommendations