Programmable Self-disassembly for Shape Formation in Large-Scale Robot Collectives

  • Melvin GauciEmail author
  • Radhika Nagpal
  • Michael Rubenstein
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)


We present a method for a large-scale robot collective to autonomously form a wide range of user-specified shapes. In contrast to most existing work, our method uses a subtractive approach rather than an additive one, and is the first such method to be demonstrated on robots that operate in continuous space. An initial dense, stationary configuration of robots distributively forms a coordinate system, and each robot decides if it is part of the desired shape. Non-shape robots then remove themselves from the configuration using a single external light source as a motion guide. The subtractive approach allows for a higher degree of motion parallelism than additive approaches; it is also tolerant of much lower-precision motion. Experiments with 725 Kilobot robots allow us to compare our method against an additive one that was previously evaluated on the same platform. The subtractive method leads to higher reliability and an order-of-magnitude improvement in shape formation speed.


  1. 1.
    Anderson, C., Theraulaz, G., Deneubourg, J.L.: Self-assemblages in insect societies. Insectes Sociaux 49(2), 99–110 (2002)CrossRefGoogle Scholar
  2. 2.
    Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: a demonstration of the grammatical approach to self-organization. In: Proceedings of the 2005 International Conference on Intelligent Robots & Systems (IROS) (2005)Google Scholar
  3. 3.
    Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeu, E.: Self-organization in Biological Systems. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar
  4. 4.
    De Rosa, M., Goldstein, S.C., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpting via hole motion: motion planning in lattice-constrained modular robots. In: Proceedings of the ICRA (2006)Google Scholar
  5. 5.
    Gauci, M., Nagpal, R., Rubenstein, M.: Programmable self-disassembly for shape formation in large-scale robot collectives: online supplementary material (2016).
  6. 6.
    Gilpin, K., Kotay, K., Rus, D.: Miche: modular shape formation by self-disassembly. Int. J. Robot. Res. 27, 345–372 (2008)CrossRefGoogle Scholar
  7. 7.
    Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: One centimeter modules for programmable matter through self-disassembly. In: Proceedings of the 2010 International Conference on Robotics and Automation (ICRA) (2010)Google Scholar
  8. 8.
    Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22, 1115–1130 (2006)CrossRefGoogle Scholar
  9. 9.
    Haghighat, B., Platerrier, B., Waegeli, L., Martinoli, A.: Synthesizing rulesets for programmable robotic self-assembly: a case study using floating miniaturized robots. In: Proceedings of the 10th International Conference Swarm Intelligence (ANTS) (2016)Google Scholar
  10. 10.
    Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy range measurements. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 50–61. ACM (2004)Google Scholar
  11. 11.
    O’Grady, R., Christensen, A.L., Dorigo, M.: Swarmorph: multirobot morphogenesis using directional self-assembly. IEEE Trans. Robot. 25(3), 738–743 (2009)CrossRefGoogle Scholar
  12. 12.
    Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014)CrossRefGoogle Scholar
  13. 13.
    Stoy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: Proceedings of the 7th International Conference on Distributed Autonomous Robotic Systems (DARS) (2004)Google Scholar
  14. 14.
    White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of the Robotics: Science and Systems I (2005)Google Scholar
  15. 15.
    Wolpert, L., Tickle, C., Lawrence, P., Meyerowitz, E., Robertson, E., Smith, J., Jessell, T.: Principles of Development, 4th edn. Oxford University Press, Oxford (2011)Google Scholar
  16. 16.
    Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)Google Scholar
  17. 17.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Robotics: self-reproducing machines. Nature 435, 163–164 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Melvin Gauci
    • 1
    Email author
  • Radhika Nagpal
    • 1
  • Michael Rubenstein
    • 2
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Northwestern UniversityEvanstonUSA

Personalised recommendations