Advertisement

Emergence and Inhibition of Synchronization in Robot Swarms

  • Fernando Perez-DiazEmail author
  • Stefan M. Trenkwalder
  • Rüdiger Zillmer
  • Roderich Groß
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

Synchronization can be a key requirement to perform coordinated actions or reach consensus in multi-robot systems. We study the effect of robot speed on the time required to achieve synchronization using pulse coupled oscillators. Each robot has an internal oscillator and the completion of oscillation cycles is signaled by means of short visual pulses. These can, in turn, be detected by other robots within their cone of vision. In this way, oscillators influence each other to attain temporal synchrony. We observe in simulation and in physical robotic experiments that synchronization can be fostered or inhibited by tuning the robot speed, leading to distinct dynamical regimes. In addition, we analyze the effect of the involved parameters on the time it takes for the system to synchronize.

Notes

Acknowledgements

S.M. Trenkwalder is recipient of a DOC Fellowship of the Austrian Academy of Sciences.

References

  1. 1.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008).  https://doi.org/10.1016/j.physrep.2008.09.002 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009).  https://doi.org/10.1109/TEVC.2009.2017516 CrossRefGoogle Scholar
  3. 3.
    Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: An experiment with kilobots. In: International Conference on Swarm Intelligence, pp. 185–196. Springer, Berlin (2016)Google Scholar
  4. 4.
    Khaluf, Y., Mathews, E., Rammig, F.J.: Self-organized cooperation in swarm robotics. In: 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, pp. 217–226. IEEE (2011)Google Scholar
  5. 5.
    Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D: Nonlinear Phenom. 50(1), 15–30 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Magnenat, S., Waibel, M., Beyeler, A.: Enki: the fast 2D robot simulator (2007). http://home.gna.org/enki/
  7. 7.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65 (2009)Google Scholar
  8. 8.
  9. 9.
    Parker, L.E.: Multiple mobile robot systems. In: Springer Handbook of Robotics, pp. 921–941. Springer, Berlin (2008)CrossRefGoogle Scholar
  10. 10.
    Perez-Diaz, F., Zillmer, R., Groß, R.: Firefly-inspired synchronization in swarms of mobile agents. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15, IFAAMAS, pp. 279–286 (2015). http://dl.acm.org/citation.cfm?id=2772879.2772917
  11. 11.
    Perez-Diaz, F., Zillmer, R., Groß, R.: Robustness of synchronization regimes in networks of mobile pulse-coupled oscillators. Phys. Rev. Appl. 7, 054002 (2017)Google Scholar
  12. 12.
    Prignano, L., Sagarra, O., Díaz-Guilera, A.: Tuning synchronization of integrate-and-fire oscillators through mobility. Phys. Rev. Lett. 110, 114,101 (2013).  https://doi.org/10.1103/PhysRevLett.110.114101
  13. 13.
    Prignano, L., Sagarra, O., Gleiser, P.M., Diaz-Guilera, A.: Synchronization of moving integrate and fire oscillators. Int. J. Bifurc. Chaos 22(07), 1250,179 (2012).  https://doi.org/10.1142/S0218127412501799 CrossRefGoogle Scholar
  14. 14.
    Ranganathan, P., Morton, R., Richardson, A., Strom, J., Goeddel, R., Bulic, M., Olson, E.: Coordinating a team of robots for urban reconnaissance. In: Proceedings of the Land Warfare Conference (2010)Google Scholar
  15. 15.
    Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proceedings of the American Control Conference, 2005, vol. 3, pp. 1859–1864 (2005).  https://doi.org/10.1109/ACC.2005.1470239
  16. 16.
    Trenkwalder, S., Lopes, Y., Kolling, A., Christensen, A., Prodan, R., Groß, R.: Openswarm: an event-driven embedded operating system for miniature robots. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4483–4490 (2016)Google Scholar
  17. 17.
    Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in a multi-robot network: from abstract models to empirical validation. IEEE Robot. Autom. Lett. 1(1), 348–353 (2016)CrossRefGoogle Scholar
  18. 18.
    Tyrrell, A., Auer, G., Bettstetter, C.: Fireflies as role models for synchronization in ad hoc networks. In: Proceedings of the 1st International Conference on Bio Inspired Models of Network, Information and Computing Systems. ACM (2006)Google Scholar
  19. 19.
    Vig, L., Adams, J.A.: Multi-robot coalition formation. IEEE Trans. Robot. 22(4), 637–649 (2006).  https://doi.org/10.1109/TRO.2006.878948 CrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, Y., Núñez, F., Doyle III, F.J.: Energy-efficient pulse-coupled synchronization strategy design for wireless sensor networks through reduced idle listening. IEEE Trans. Signal Process. 60(10), 5293–5306 (2012).  https://doi.org/10.1109/TSP.2012.2205685 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, Y., Núñez, F., Doyle III, F.J.: Mobility induced network evolution speeds up synchronization of wireless sensor networks. In: Proceedings of the American Control Conference, 2014, pp. 3553–3558. IEEE (2014).  https://doi.org/10.1109/ACC.2014.6858641
  22. 22.
    Wang, J., Xu, C., Feng, J., Chen, M.Z., Wang, X., Zhao, Y.: Synchronization in moving pulse-coupled oscillator networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 62(10), 2544–2554 (2015).  https://doi.org/10.1109/TCSI.2015.2477576 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Winfield, A.F.: Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In: Distributed Autonomous Robotic Systems, vol. 4, pp. 273–282. Springer, Berlin (2000)CrossRefGoogle Scholar
  24. 24.
    Yu, C., Werfel, J., Nagpal, R.: Collective decision-making in multi-agent systems by implicit leadership. In: Proceedings of the 2010 International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’10, IFAAMAS, pp. 1189–1196 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fernando Perez-Diaz
    • 1
    Email author
  • Stefan M. Trenkwalder
    • 2
  • Rüdiger Zillmer
    • 2
  • Roderich Groß
    • 2
  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK
  2. 2.Department of Automatic Control and Systems EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations