Abstract
Cholesteatoma of the middle ear is one of the most complex topics in otology; it is a chronic otitis media with the proliferation of “a wrong skin in the wrong place”.
In this chapter a comprehensive overview of this pathology with the most recent advances relative to its pathogenesis is discussed. Pertinent light- and electron microscopic histopathology along with its related molecular biology and the potential genetic factors are reported. Bone resorption mechanisms in cholesteatoma are explained. Cholesteatoma is described according to its site of origin and its growth pathways. The accurate clinical assessment is detailed.
The staging system of cholesteatoma is represented according to the recent EAONO/JOS Classification. The major contribution of imaging with CT scan is illustrated; especially to demonstrate cholesteatoma extension to the sites of difficult access (S1: anterior epitympanum, S2: sinus tympani). Also the MRI input in cholesteatoma is considered.
Cholesteatoma management being until now exclusively surgical, the main procedures are presented in detail with their correspondent advantages and disadvantages. Although the canal wall up technic responds best to the main objectives of nowadays strategies, special attention is reserved to pediatric cholesteatoma.
Follow up of cholesteatoma is a life time responsibility, so relative algorithms are proposed. Follow up by advanced MRI technics becoming more and more reliable, CWU is nowadays the procedure of choice for cholesteatoma surgery.
References
- 1.Aquino JE, Cruz Filho NA, de Aquino JN. Epidemiology of middle ear and mastoid cholesteatomas: study of 1146 cases. Braz J Otorhinolaryngol. 2011;77(3):341–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Potsic WP, Korman SB, Samadi DS, Wetmore RF. Congenital cholesteatoma: 20 year experience at the Children’s Hospital of Philadelphia. Arch Otolaryngol Head Neck Surg. 2002;126(1):409–14.CrossRefGoogle Scholar
- 3.Nelson M, Roger G, Koltai PJ, Garabedian EN, Triglia JM, Roman S, et al. Congenital cholesteatoma: classification, management and outcome. Arch Otolaryngol Head Neck Surg. 2002;128(1):810–4.PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Abramson M. Controversies in pediatric otology: point counterpoint. Am J Otol. 1985;6:167–9.PubMedPubMedCentralGoogle Scholar
- 5.Deguine O, Deguine CH. The contralateral ear in cholesteatoma. Cholesteatoma and mastoid surgery. 3rd International Conference of Cholesteatoma, Copenhagen. Amsterdam: Kugler & Ghedine Publications; 1989. p. 393–8.Google Scholar
- 6.Nevoux J, Lenoir M, Roger G, Denoyelle F, Le Pointe HD, Garabédian E-N. Childhood cholesteatoma. Eur Ann Otorhinolaryngol Head Neck Dis. 2010;127(4):143–50.PubMedCrossRefPubMedCentralGoogle Scholar
- 7.McDonald TJ, Cody DT, Ryan RE Jr. Congenital cholesteatoma of the ear. Ann Otol Rhinol Laryngol. 1984;93:637–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Friedberg J. Congenital cholesteatoma. Laryngoscope. 1994;104:1–24.PubMedCrossRefPubMedCentralGoogle Scholar
- 9.Cruveilher J. Anatomie Pathologie du corps humain. Paris: Bailliere; 1829.Google Scholar
- 10.Muller J. Uber den feineren Bau and die Formen des krankhaften Geschwulste. Berlin: Reimer; 1838.Google Scholar
- 11.Ikeda M. Etude en microscopie electronique de la stucture fine du cholesteatoma. J Otorhinolaryngol. 1968;71:84.Google Scholar
- 12.Bodelet R, Wayoff M. Notes preliminaires sur l’ultrastructure du cholesteatome. Ann Otolaryngol. 1970;87:449.Google Scholar
- 13.Lim D, Saunders W. Acquired cholesteatoma. Light and electron microscopic observation. Ann Otol. 1972;81:2.Google Scholar
- 14.Magnan J, Bremond G, De Micco C. Les aspects microscopiques du cholesteatome. Cah ORL. 1975;10:303–11.Google Scholar
- 15.Vennix P, Kuijpers W, Tonnaer E, Peters TA, Ramaekers FCS. The cytokeratin expression in the normal rat middle ear and during induced OME. In: Tos M, Thomsen J, Peitersen E, editors. Cholesteatoma and mastoid surgery. Amsterdam: Kugler & Ghedini; 1989. p. 111–5.Google Scholar
- 16.BroeKaert D, Cornille A, Eto H, et al. A comparative immunohistochemical study of cytokeratin and vimentin expression in middle ear mucosa and cholesteatoma and in epidermis. Virchow Arch A Pathol Anat Histopathol. 1988;413:39–51.CrossRefGoogle Scholar
- 17.Karmody CS, Byahatti SV, Blevins N, Valtonen H, Northrop C. The origin of congenital cholesteatoma. Am J Otol. 1998;19(3):292–7.Google Scholar
- 18.Paparella MM, Rybak L. Congenital cholesteatoma. Otolaryngol Clin N Am. 1978;11:113–20.Google Scholar
- 19.Sadé J. The etiology of cholesteatoma: the metaplastic theory. In: McCabe B, Sadé J, Abrahamson M, editors. Cholesteatoma: first International Conference. Birmingham, AL: Aesculapius Publishing; 1977. p. 212–32.Google Scholar
- 20.Piza J, Gonzales M, Northorp CC. Meconium contamination of the neonatal ear. J Pediatr. 1989;115:910–4.PubMedCrossRefGoogle Scholar
- 21.Michaels L. An epidermoid formation in the developing middle ear: possible source of cholesteatoma. J Otolaryngol. 1986;15:169–74.PubMedGoogle Scholar
- 22.Aimi K. Role of the tympanic ring in the pathogenesis of congenital cholesteatoma. Laryngoscope. 1983;93:1140–6.PubMedCrossRefGoogle Scholar
- 23.Bennett M, Warren F, Jackson GC, Kaylie D. Congenital cholesteatoma: theories, facts, and 53 patients. Otolaryngol Clin North Am. 2006;39(6):1081–94.PubMedCrossRefGoogle Scholar
- 24.Tos M. A new pathogenesis of mesotympanic (congenital) cholesteatoma. Laryngoscope. 2000;110(11):1890–7.PubMedCrossRefGoogle Scholar
- 25.Habermann J. Zur Entstehung des Cholesteatoms des Mittelorhes. Arch Otorhinolaryngol. 1888;27:42.Google Scholar
- 26.Bezold F. Uber das Cholesteatom des Mittelohres. Z Ohrenhk. 1891;21:252–63.Google Scholar
- 27.Wittmaack K. Wie entsteht ein genuines Cholesteatom? Arch Ohren Nasen Kehlkopfhk. 1933;137:306.CrossRefGoogle Scholar
- 28.Schwartz H, Eysell C. Uber die kunstliche Eroffnung des Warzenfortsatzes. Arch Ohrenheilk. 1873;7:157.CrossRefGoogle Scholar
- 29.Lange W. Uber die Entstrhung des Mittelohre cholesteatoma. Z Hals-Nas-Ohrenhk. 1925;11:250–65.Google Scholar
- 30.Gray D. The treatment of cholesteatoma in children. Proc R Soc Med. 1964;57:769–71.PubMedPubMedCentralGoogle Scholar
- 31.Jackler RK, Santa Maria PL, Varsak YK, Nguyen A, Blevins NH. A new theory on the pathogenesis of acquired cholesteatoma: Mucosal traction. Laryngoscope. 2015;125(Suppl 4):S1–14.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Friedmann I. The comparative pathology of otitis media, experimental and human. II. The histopathology of experimental otitis of the guinea-pig with particular reference to experimental cholesteatoma. J Laryngol Otol. 1955;69(9):588–601.PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Olszewska E, Wagner M, Bernal-Sprekelsen M, Ebmeyer J, Dazert S, Hildmann H, et al. Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol. 2004;261(1):6–24.PubMedCrossRefGoogle Scholar
- 34.Bremond G, Magnan J, Acquaviva F. Cholesteatoma and epidermoid metaplasia. Differences and similarieties. Acta Otorhinolaryngol Belg. 1980;34(1):34–42.Google Scholar
- 35.Lepercque S, Broekaert D, Van Cauwenberge P. Cytokeratin expression patterns in the human tympanic membrane and external ear canal. Eur Arch Otorhinolaryngol. 1993;250(2):78–81.PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Kuo C-L. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope. 2015;125(1):234–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Chole RA, Tinling SP. Basal lamina breaks in the histogenesis of cholesteatoma. Laryngoscope. 1985;95(3):270–5.PubMedCrossRefGoogle Scholar
- 38.Yamamoto-Fukuda T, Takahashi H, Koji T. Animal models of middle ear cholesteatoma. J Biomed Biotechnol. 2011;2011. Article ID 394241, 11 pagesCrossRefGoogle Scholar
- 39.Albino AP, Kimmelman CP, Parisier SC. Cholesteatoma: a molecular and cellular puzzle. Am J Otol. 1998;19(1):7–19.PubMedGoogle Scholar
- 40.Kuo CL, Shiao AS, Yung M, Sakagami M, Sudhoff H, Wang CH, Hsu CH, et al. Updates and knowledge gaps in cholesteatoma research. Biomed Res Int. 2015;2015:854024.PubMedPubMedCentralGoogle Scholar
- 41.Magnan J, Chays A, Bremond G, et al. Anatomo-pathologie du cholesteatme. Acta Oto-Rhino-Laryngologica Belg. 1991;45:27–34.Google Scholar
- 42.Magnan J, Chays A, Bruzzo M, et al. Pathogenesis of cholesteatoma. In: Ars B, editor. Pathogenesis in cholesteatoma. The Hague: Kugler Publications; 1999. p. 105–18.Google Scholar
- 43.Preciado DA. Biology of cholesteatoma: special considerations in pediatric patients. Int J Pediatr Otorhinolaryngol. 2012;76(3):319–21.PubMedCrossRefGoogle Scholar
- 44.Yoshikawa M, Kojima H, Yaguchi Y, Okada N, Saito H, Moriyama H. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin. PLoS One. 2013;8(6):e66725.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Raynov AM, Choung YH, Park HY, Choi SJ, Park K. Establishment and characterization of an in vitro model for cholesteatoma. Clin Exp Otorhinolaryngol. 2008;1(2):86–91.PubMedPubMedCentralCrossRefGoogle Scholar
- 46.Cheshire IM, Blight A, Ratcliffe WA, Proops DW, Heath DA. Production of parathyroid-hormone-related protein by cholesteatoma cells in culture. Lancet. 1991;338(8774):1041–3.PubMedCrossRefGoogle Scholar
- 47.Yetiser S, Satar B, Aydin N. Expression of epidermal growth factor, tumor necrosis factor-alpha, and interleukin-1alpha in chronic otitis media with or without cholesteatoma. Otol Neurotol. 2002;23(5):647–52.PubMedCrossRefGoogle Scholar
- 48.Chung JW, Yoon TH. Different production of interleukin-1α, interleukin-1β and interleukin-8 from cholesteatomatous and normal epithelium. Acta Otolaryngol. 1998;118(3):386–91.PubMedCrossRefPubMedCentralGoogle Scholar
- 49.Schilling V, Negri B, Bujia J, Schulz P, Kastenbauer E. Possible role of interleukin 1α and interleukin 1 beta in the pathogenesis of cholesteatoma of the middle ear. Am J Otol. 1992;13(4):350–5.PubMedPubMedCentralGoogle Scholar
- 50.Ergün S, Zheng X, Carlsöö B. Expression of transforming growth factor-alpha and epidermal growth factor receptor in middle ear cholesteatoma. Am J Otol. 1996;17(3):393–6.PubMedGoogle Scholar
- 51.Mayot D, Wayoff M, Bene M, et al. Immunological characteristics of human cholesteatoma matrix. In: Tos M, Thomsen J, Peitersen E, editors. Cholesteatoma and mastoid surgery. Kugler & Ghedini: Amsterdam/Berkley/Milan; 1989. p. 181–2.Google Scholar
- 52.Bruzzo M, Martin PM, Magnan J. Etude in vitro du systeme EGF-REGF dans le cholesteatome et le conduit auditif externe. J Fr ORL. 1996;45:87–93.Google Scholar
- 53.Sheikholeslam-Zadeh R, Decaestecker C, Delbrouck C, Danguy A, Salmon I, Zick Y, et al. The levels of expression of galectin-3, but not of galectin-1 and galectin-8, correlate with apoptosis in human cholesteatomas. Laryngoscope. 2001;111(6):1042–7.PubMedCrossRefGoogle Scholar
- 54.Olszewska E, Chodynicki S, Chyczewski L. Apoptosis in the pathogenesis of cholesteatoma in adults. Eur Arch Otorhinolaryngol. 2006;263(5):409–13.PubMedCrossRefGoogle Scholar
- 55.Chung JH, Lee SH, Park CW, Kim KR, Tae K, Kang SH, et al. Expression of apoptotic vs antiapoptotic proteins in middle ear cholesteatoma. Otolaryngol Head Neck Surg. 2015;153(6):1024–30.PubMedCrossRefGoogle Scholar
- 56.Zhang W, Chen X, Qin Z. MicroRNA let-7a suppresses the growth and invasion of cholesteatoma keratinocytes. Mol Med Rep. 2015;11(3):2097–103.PubMedCrossRefGoogle Scholar
- 57.Chole RA, Faddis BT. Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg. 2002;128(10):1129–33.PubMedCrossRefGoogle Scholar
- 58.Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ, Jung TT, Kim BH, Park SY, Lin J, Ondrey FG, Mains DR, Huang T. The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol. 2008;1(3):117–38.PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Kupper TS. The activated keratinocyte: a model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses. J Invest Dermatol. 1990;94(6 Suppl):146S–50S.PubMedCrossRefGoogle Scholar
- 60.Reinartz JJ, George E, Lindgren BR, Niehans GA. Expression of p53, transforming growth factor alpha, epidermal growth factor receptor, and c-erbB-2 in endometrial carcinoma and correlation with survival and known predictors of survival. Hum Pathol. 1994;25(10):1075–83.PubMedCrossRefGoogle Scholar
- 61.Khazaie K, Schirrmacher V, Lichtner RB. EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev. 1993;12(3–4):255–74.PubMedCrossRefGoogle Scholar
- 62.Grandis JR, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998;90(11):824–32.CrossRefGoogle Scholar
- 63.Juhász A, Sziklai I, Rákosy Z, Ecsedi S, Adány R, Balázs M. Elevated level of tenascin and matrix metalloproteinase 9 correlates with the bone destruction capacity of cholesteatomas. Otol Neurotol. 2009;30(4):559–65.PubMedCrossRefGoogle Scholar
- 64.Laeeq S, Faust R. Modeling the cholesteatoma microenvironment: coculture of HaCaT keratinocytes with WS1 fibroblasts induces MMP-2 activation, invasive phenotype, and proteolysis of the extracellular matrix. Laryngoscope. 2007;117(2):313–8.PubMedCrossRefGoogle Scholar
- 65.Shinoda H, Huang C-C. Expressions of c-jun and p53 proteins in human middle ear cholesteatoma: relationship to keratinocyte proliferation, differentiation, and programmed cell death. Laryngoscope. 1995;105(11):1232–7.PubMedCrossRefGoogle Scholar
- 66.Holly A, Sittinger M, Bujia J. Immunohistochemical demonstration of c-myc oncogene product in middle ear cholesteatoma. Eur Arch Otorhinolaryngol. 1995;252(6):366–9.PubMedCrossRefGoogle Scholar
- 67.Palkó E., Póliska S., Csákányi Z., et al. The c-MYC protooncogene expression in cholesteatoma. Biomed Res Int. 2014;2014:Article ID 639896, 6 pages.CrossRefGoogle Scholar
- 68.Ozturk K, Yildirim MS, Acar H, Cenik Z, Keles B. Evaluation of c-MYC status in primary acquired cholesteatoma by using fluorescence in situ hybridization technique. Otol Neurotol. 2006;27(5):588–91.PubMedCrossRefGoogle Scholar
- 69.Ecsedi S, Rákosy Z, Vízkeleti L, et al. Chromosomal imbalances are associated with increased proliferation and might contribute to bone destruction in cholesteatoma. Otolaryngol Head Neck Surg. 2008;139(5):635–40.PubMedCrossRefGoogle Scholar
- 70.Klenke C, Janowski S, Borck D, et al. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One. 2012;7(12):e52718.PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Choung YH, Park K, Kang SO, Raynov AM, Chul HK, Choung PH. Expression of the gap junction proteins connexin 26 and connexin 43 in human middle ear cholesteatoma. Acta Otolaryngol. 2006;126(2):138–43.PubMedCrossRefPubMedCentralGoogle Scholar
- 72.James AL, Chadha NK, Papsin BC, Stockley TL. Pediatric cholesteatoma and variants in the gene encoding connexin 26. Laryngoscope. 2010;120(1):183–7.PubMedPubMedCentralGoogle Scholar
- 73.Maniu A, Harabagiu O, Schrepler MP, Catana A, Fanuta B, Mogoanta CA. Molecular biology of cholesteatoma. Romanian J Morphol Embryol. 2014;55(1):7–13.Google Scholar
- 74.Bayazít YA, Karakök M, Uçak R, Kanlíkama M. Cycline-dependent kinase inhibitor, p27 (KIP1), is associated with cholesteatoma. Laryngoscope. 2001;111(6):1037–41.PubMedCrossRefPubMedCentralGoogle Scholar
- 75.Chole RA, McGinn MD, Tinling SP. Pressure-induced bone resorption in the middle ear. Ann Otol Rhinol Laryngol. 1985;94(2 Pt 1):165–70.PubMedCrossRefPubMedCentralGoogle Scholar
- 76.McGinn MD, Chole RA, Tinling SP. Bone resorption induced by middle-ear implants. Arch Otolaryngol Head Neck Surg. 1986;112(6):635–41.PubMedCrossRefPubMedCentralGoogle Scholar
- 77.Orisek BS, Chole RA. Pressures exerted by experimental cholesteatomas. Arch Otolaryngol Head Neck Surg. 1987;113(4):386–91.PubMedCrossRefGoogle Scholar
- 78.Huang CC, Yi ZX, Yuan QG, Abramson M. A morphometric study of the effects of pressure on bone resorption in the middle ear of rats. Am J Otol. 1990;11(1):39–43.PubMedGoogle Scholar
- 79.Maranhao A, Andrade J, Godofredo V, Matos R, Penido N. Epidemiology of intratemporal complications of otitis media. Int Arch Otorhinolaryngol. 2014;18(2):178–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 80.Akimoto R, Pawankar R, Yagi T, Baba S. Acquired and congenital cholesteatoma: determination of tumor necrosis factor-alpha, intercellular adhesion molecule-1, interleukin- 1-alpha and lymphocyte functional antigen-1 in the inflammatory process. ORL J Otorhinolaryngol Relat Spec. 2000;62(5):257–65.PubMedCrossRefPubMedCentralGoogle Scholar
- 81.Ahn JM, Huang C-C, Abramson M. Interleukin 1 causing bone destruction in middle ear cholesteatoma. Otolaryngol Head Neck Surg. 1990;103(4):527–36.PubMedCrossRefGoogle Scholar
- 82.Shiwa M, Kojima H, Kamide Y, Moriyama H. Involvement of interleukin-1 in middle ear cholesteatoma. Am J Otolaryngol. 1995;16(5):319–24.PubMedCrossRefPubMedCentralGoogle Scholar
- 83.Kim CS, Lee CH, Chung JW, Kim CD. Interleukin-1 alpha, interleukin-1 beta and interleukin-8 gene expression in human aural cholesteatomas. Acta Otolaryngol. 1996;116(2):302–6.PubMedCrossRefGoogle Scholar
- 84.Kawai T, Matsuyama T, Hosokawa Y, et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol. 2006;169(3):987–98.PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Dornelles Cde C, da Costa SS, Meurer L, Rosito LP, da Silva AR, Alves SL. Comparison of acquired cholesteatoma between pediatric and adult patients. Eur Arch Otorhinolaryngol. 2009;266(10):1553–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 86.Schönermark M, Mester B, Kempf HG, Bläser J, Tschesche H, Lenarz T. Expression of matrix-metalloproteinases and their inhibitors in human cholesteatomas. Acta Otolaryngol. 1996;116(3):451–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 87.Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.PubMedCrossRefPubMedCentralGoogle Scholar
- 88.Sastry KV, Sharma SC, Mann SB, Ganguly NK, Panda NK. Aural cholesteatoma: role of tumor necrosis factor-alpha in bone destruction. Am J Otol. 1999;20(2):158–61.PubMedPubMedCentralGoogle Scholar
- 89.Juhasz A, Sziklai I, Rakosy Z, Ecsedi S, Adany R, Balazs M. Elevated level of tenascin and matrix metalloproteinase 9 correlates with the bone destruction capacity of cholesteatomas. Otol Neurotol. 2009;30(4):559–65.PubMedCrossRefPubMedCentralGoogle Scholar
- 90.Macias MP, Gerkin RD, Macias JD. Increased amphiregulin expression as a biomarker of cholesteatoma activity. Laryngoscope. 2010;120(11):2258–63.PubMedCrossRefGoogle Scholar
- 91.Mallet Y, Nouwen J, Lecomte-Houcke M, Desaulty A. Aggressiveness and quantification of epithelial proliferation of middle ear cholesteatoma by MIB1. Laryngoscope. 2003;113(2):328–31.PubMedCrossRefGoogle Scholar
- 92.Oger M, Alpay HC, Orhan I, Onalan EE, Yanilmaz M, Sapmaz E. The effect of BMP-2, BMP-4 and BMP-6 on bone destruction of cholesteatoma presence. Am J Otolaryngol. 2013;34(6):652–7.PubMedCrossRefGoogle Scholar
- 93.Jeong JH, Park CW, Tae K, Lee SH, Shin DH, Kim KR, et al. Expression of RANKL and OPG in middle ear cholesteatoma tissue. Laryngoscope. 2006;116(7):1180–4.PubMedCrossRefGoogle Scholar
- 94.Haidar H, Sheikh R, Larem A, Elsaadi A, Abdulkarim H, et al. Ossicular chain erosion in chronic suppurative otitis media. Otolaryngol (Sunnyvale). 2015;5:203.Google Scholar
- 95.Lingam RK, Khatri P, Hughes J, Singh A. Apparent diffusion coefficients for detection of postoperative middle ear cholesteatoma on non–echo-planar diffusion weighted images. Radiology. 2013;269(2):504–10.PubMedCrossRefGoogle Scholar
- 96.Lingam RK, Bassett P. A meta-analysis on the diagnostic performance of non-echoplanar diffusion-weighted imaging in detecting middle ear cholesteatoma: 10 years on. Otol Neurotol. 2017;38(4):521–8.PubMedCrossRefGoogle Scholar
- 97.Yung M, Tono T, Olszewska E, Yamamoto Y, Sudhoff H, Sakagami M, Mulder J, Kojima H, İncesulu A, Trabalzini F, Özgirgin N. EAONO/JOS joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol. 2017;13(1):1–8.PubMedCrossRefGoogle Scholar
- 98.Vitale RF, Ribeiro Fde A. The role of tumor necrosis factor-alpha (TNF-alpha) in bone resorption present in middle ear cholesteatoma. Braz J Otorhinolaryngol. 2007;73(1):117–21.PubMedCrossRefGoogle Scholar
- 99.Schonermark M, Mester B, Kempf HG, Blaser J, Tschesche H, Lenarz T. Expression of matrix-metalloproteinases and their inhibitors in human cholesteatomas. Acta Otolaryngol. 1996;116(3):451–6.PubMedCrossRefGoogle Scholar
- 100.Yamamoto-Fukuda T, Terakado M, Hishikawa Y, Koji T, Takahashi H. Topical application of 5-fluorouracil on attic cholesteatoma results in downregulation of keratinocyte growth factor and reduction of proliferative activity. Eur Arch Otorhinolaryngol. 2008;265(10):1173–8.PubMedCrossRefGoogle Scholar
- 101.Li S, Meng J, Zhang F, Li X, Qin Z. Revision surgery for canal wall down mastoidectomy: intra-operative findings and results. Acta Otolaryngol. 2016;136(1):18–22.PubMedCrossRefGoogle Scholar
- 102.Mosher HP. A method of filling the excavated mastoid with a flap from the back of the auricle. Laryngoscope. 1911;21(12):1158–63.CrossRefGoogle Scholar
- 103.Kuo C-L, Lien C-F, Shiao A-S. Mastoid obliteration for pediatric suppurative cholesteatoma: long-term safety and sustained effectiveness after 30 years' experience with cartilage obliteration. Audiol Neurotol. 2014;19(6):358–69.CrossRefGoogle Scholar
- 104.Singh V, Atlas M. Obliteration of the persistently discharging mastoid cavity using the middle temporal artery flap. Otolaryngol Head Neck Surg. 2007;137(3):433–8.PubMedCrossRefGoogle Scholar
- 105.Palva T. Operative technique in mastoid obliteration. Acta Otolaryngol. 1973;75(4):289–90.PubMedCrossRefGoogle Scholar
- 106.Hunter JB, Zuniga MG, Sweeney AD, Bertrand NM, Wanna GB, Haynes DS, Wootten CT, Rivas A. Pediatric endoscopic cholesteatoma surgery. Otolaryngol Head Neck Surg. 2016;154(6):1121–7.PubMedCrossRefGoogle Scholar
- 107.Austin DF. Single-stage surgery for cholesteatoma: an actuarial analysis. Am J Otol. 1989;10(6):419–25.PubMedGoogle Scholar
- 108.Cody TR, McDonald TJ. Mastoidectomy for acquired cholesteatoma: follow-up to 20 years. Laryngoscope. 1984;94(8):1027–30.PubMedCrossRefGoogle Scholar
- 109.Vartiainen E, Virtaniemi J. Findings in revision operations for failures after cholesteatoma surgery. Am J Otol. 1994;15(2):229–32.PubMedGoogle Scholar
- 110.Lau T, Tos M. Cholesteatoma in children: recurrence related to observation period. Am J Otolaryngol Head Neck Med Surg. 1987;8(6):364–75.Google Scholar
- 111.Roger G, Denoyelle F, Chauvin P, Schlegel-Stuhl N, Garabedian E-N. Predictive risk factors of residual cholesteatoma in children: a study of 256 cases. Am J Otol. 1997;18(5):550–8.PubMedGoogle Scholar
- 112.Dubrulle F, Souillard R, Chechin D, Vaneecloo FM, Desaulty A, Vincent C. Diffusion-weighted MR imaging sequence in the detection of postoperative recurrent cholesteatoma. Radiology. 2006 Feb;238(2):604–10.PubMedCrossRefPubMedCentralGoogle Scholar
- 113.Jindal M, Riskalla A, Jiang D, Connor S, O'Connor AF. A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol. 2011;32:1243–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 114.Haruyama T, Furukawa M, Kusunoki T, Onoda J, Ikeda K. Expression of IL-17 and its role in bone destruction in human middle ear cholesteatoma. ORL J Otorhinolaryngol Relat Spec. 2010;72(6):325–31.PubMedCrossRefGoogle Scholar