Dolphin Pod Optimization

A Nature-Inspired Deterministic Algorithm for Simulation-Based Design
  • Andrea SeraniEmail author
  • Matteo Diez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)


A novel nature-inspired, deterministic, global, and derivative-free optimization method, namely the dolphin pod optimization (DPO), is presented for solving simulation-based design optimization problems with costly objective functions. DPO is formulated for unconstrained single-objective minimization and based on a simplified social model of a dolphin pod in search for food. A parametric analysis is conducted to identify the most promising DPO setup, using 100 analytical benchmark functions and three performance criteria, varying pod size and initialization, coefficient set, and box-constraint method, resulting in more than 140,000 optimization runs. The most promising setup is compared with deterministic particle swarm optimization, central force optimization, and DIviding RECTangles and finally applied to the optimization of a destroyer hull form for reduced resistance and improved seakeeping.


Dolphin pod optimization Deterministic optimization Global optimization Derivative-free optimization 



The work is supported by ONRG, NICOP grant N62909-15-1-2016, under the administration of Dr Woei-Min Lin, Dr. Salahuddin Ahmed, and Dr. Ki-Han Kim, and by the Italian Flagship Project RITMARE.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the Fourth IEEE Conference on Neural Networks, Piscataway, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  3. 3.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  4. 4.
    Yang, X.S., Deb, S.: Cuckoo search via levy flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing (NaBic 2009), India, pp. 210–214. IEEE Publications, USA (2009)Google Scholar
  5. 5.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Gonzlez, J., Pelta, D., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010). Scholar
  6. 6.
    Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Fasano, G., Diez, M.: Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. Appl. Soft. Comput. 49, 313–334 (2016)CrossRefGoogle Scholar
  7. 7.
    Formato, R.A.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 77, 425–491 (2007)CrossRefGoogle Scholar
  8. 8.
    Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theor. Appl. 79(1), 157–181 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Würsig, B.: Delphinid foraging strategies. In: Dolphin Cognition and Behavior: A Comparative Approach. Psychology Press (2013)Google Scholar
  10. 10.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009). Special Section on High Order Fuzzy SetsCrossRefGoogle Scholar
  11. 11.
    Connor, R.C., Wells, R.S., Mann, J., Read, A.J.: The bottlenose dolphin: social relationships in a fission-fusion society. In: Cetacean Societies: Field Studies of Bottlenose Dolphins and Whales, pp. 97–126. University of Chicago Books, Chicago (2010)Google Scholar
  12. 12.
    Bruck, J.N.: Decades-long social memory in bottlenose dolphins. Proc. R. Soc. Lond. B Biol. Sci. 280(1768) (2013)CrossRefGoogle Scholar
  13. 13.
    Kaveh, A., Farhoudi, N.: A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)CrossRefGoogle Scholar
  14. 14.
    Kaveh, A., Hosseini, P.: A simplified dolphin echolocation optimization method for optimum deisgn of trusses. Int. J. Optim. Civ. Eng. 4(3), 381–397 (2014)Google Scholar
  15. 15.
    Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4, 150–194 (2013)zbMATHGoogle Scholar
  16. 16.
    Serani, A., Diez, M.: Dolphin pod optimization. In: Tan, Y., Takagi, H., Shi, Y. (eds.) ICSI 2017. LNCS, vol. 10385, pp. 63–70. Springer, Cham (2017). Scholar
  17. 17.
    Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with Hammersley and Halton points. J. Graph. Tools 2(2), 9–24 (1997)CrossRefGoogle Scholar
  18. 18.
    Campana, E.F., Diez, M., Iemma, U., Liuzzi, G., Lucidi, S., Rinaldi, F., Serani, A.: Derivative-free global ship design optimization using global/local hybridization of the DIRECT algorithm. Optim. Eng. 17(1), 127–156 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Diez, M., Serani, A., Campana, E.F., Volpi, S., Stern, F.: Design space dimensionality reduction for single- and multi-disciplinary shape optimization. In: AIAA/ISSMO Multidisciplinary Analysis and Optimization (MA&O), AVIATION 2016, Washington D.C., 13–17 June 2016Google Scholar
  20. 20.
    Diez, M., Serani, A., Campana, E.F., Goren, O., Sarioz, K., Danisman, D.B., Grigoropoulos, G., Aloniati, E., Visonneau, M., Queutey, P., Stern, F.: Multi-objective hydrodynamic optimization of the DTMB 5415 for resistance and seakeeping. In: Proceedings of the 13th International Conference on Fast Sea Transportation, FAST 2015, Washington, D.C. (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.CNR-INSEAN, National Research Council–Marine Technology Research InstituteRomeItaly

Personalised recommendations