Advertisement

Graph Fragmentation Problem for Natural Disaster Management

  • Natalia CastroEmail author
  • Graciela Ferreira
  • Franco Robledo
  • Pablo Romero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)

Abstract

Natural disasters represent a threaten for the existence of human beings. Given its remarkable importance, operational researchers should contribute to provide rationale decisions.

In this paper we study a purely combinatorial problem that models management disasters, called Graph Fragmentation Problem, or GFP for short. The problem belongs to the \(\mathscr {NP}\)-Hard class. As corollary, finding the optimal protection scheme is prohibitive for large populations. First, we review the problem and its properties. Then, we introduce a mathematical programming formulation and exact resolution for small instances. Finally, we discuss feasible model extensions and trends for future work.

Notes

Acknowledgements

This work is partially supported by Project 395 CSIC I+D Sistemas Binarios Estocásticos Dinámicos.

References

  1. 1.
    Aprile, M., Castro, N., Robledo, F., Romero, P.G.: Analysis of node-resilience strategies under natural disasters. In: International Conference on Design of Reliable Communication Networks 2017 (DRCN 2017), Munich, Germany, pp. 93–100, March 2017Google Scholar
  2. 2.
    Ball, F., Sirl, D.: Acquaintance vaccination in an epidemic on a random graph with specified degree distribution. J. Appl. Probab. 50(4), 1147–1168 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiway cuts (extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC 1992, New York, NY, USA, pp. 241–251. ACM (1992)Google Scholar
  4. 4.
    Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619 (2012)CrossRefGoogle Scholar
  5. 5.
    Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Mathe. 8, 399–404MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gomes, T., Tapolcai, J., Esposito, C., Hutchison, D., Kuipers, F., Rak, J., de Sousa, A., Iossifides, A., Travanca, R., Andr, J., Jorge, L., Martins, L., Ugalde, P.O., Pai, A., Pezaros, D., Jouet, S., Secci, S., Tornatore, M.: A survey of strategies for communication networks to protect against large-scale natural disasters. In: 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 11–22, September 2016Google Scholar
  7. 7.
    Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as steiner tree problems over layered graphs. Math. Program. 128(1), 123–148 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  9. 9.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pauly, J.J.: The great Chicago fire as a national event. Am. Q. 36(5), 668–683 (1984)CrossRefGoogle Scholar
  11. 11.
    Piccini, J., Robledo, F., Romero, P.: Analysis and complexity of pandemics. In: 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 224–230, September 2016Google Scholar
  12. 12.
    Piccini, J., Robledo, F., Romero, P.: Node-immunization strategies in a stochastic epidemic model. In: Pardalos, P., Pavone, M., Farinella, G.M., Cutello, V. (eds.) MOD 2015. LNCS, vol. 9432, pp. 222–232. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27926-8_19CrossRefGoogle Scholar
  13. 13.
    Piccini, J., Robledo, F., Romero, P.: Graph fragmentation problem. In: Proceedings of 5th the International Conference on Operations Research and Enterprise Systems, pp. 137–144 (2016)Google Scholar
  14. 14.
    Taubenberger, J.K., Reid, A.H., Lourens, R.M., Wang, R., Jin, G., Fanning, T.G.: Molecular virology: was the 1918 pandemic caused by a bird flu? Was the 1918 flu avian in origin? (Reply). Nature 440, 9–10 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Natalia Castro
    • 1
    Email author
  • Graciela Ferreira
    • 1
  • Franco Robledo
    • 1
  • Pablo Romero
    • 1
  1. 1.Facultad de Ingeniería, Instituto de Matemática y Estadística IMERLUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations