Advertisement

Petersen Graph is Uniformly Most-Reliable

  • Guillermo RelaEmail author
  • Franco Robledo
  • Pablo Romero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)

Abstract

A celebrated problem in network optimization is the all-terminal reliability maximization. We want to communicate a fixed number n of terminals, but we have a fixed budget constraint m. The goal is to build m links such that the all-terminal reliability is maximized in the resulting graph. In such case, the result is a uniformly most-reliable graph. The discovery of these graphs is a challenging problem that launched an interplay between extremal graph theory and computational optimization.

In this paper, we mathematically prove that Petersen graph is uniformly most-reliable. The paper is closed with a conjecture on the existence of other uniformly most-reliable graphs.

Keywords

Network reliability analysis Uniformly most-reliable graphs Petersen graph 

Notes

Acknowledgements

This work is partially supported by Project 395 CSIC I+D Sistemas Binarios Estocásticos Dinámicos. We wish to thank Dr. Louis Petingi for his valuable comments on t-optimality throughout the writing of this manuscript.

References

  1. 1.
    Bauer, D., Boesch, F., Suffel, C., Van Slyke, R.: On the validity of a reduction of reliable network design to a graph extremal problem. IEEE Trans. Circuits Syst. 34(12), 1579–1581 (1987)CrossRefGoogle Scholar
  2. 2.
    Bauer, D., Boesch, F., Suffel, C., Tindell, R.: Combinatorial optimization problems in the analysis and design of probabilistic networks. Networks 15(2), 257–271 (1985)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beineke, L.W., Wilson, R.J., Oellermann, O.R.: Topics in Structural Graph Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2012)Google Scholar
  4. 4.
    Biggs, N.: Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  5. 5.
    Boesch, F.T., Li, X., Suffel, C.: On the existence of uniformly optimally reliable networks. Networks 21(2), 181–194 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boesch, F.T., Satyanarayana, A., Suffel, C.L.: A survey of some network reliability analysis and synthesis results. Networks 54(2), 99–107 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bollobás, B.: Extremal Graph Theory. Dover Books on Mathematics. Dover Publications, New York (2004)zbMATHGoogle Scholar
  8. 8.
    Bussemake, F.C., Cobeljic, S., Cvetkovic, D.M., Seidel, J.J.: Cubic graphs on \(\le \)14 vertices. J. Comb. Theor. B 23(2), 234–235 (1977)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Canale, E., Piccini, J., Robledo, F., Romero, P.: Diameter-constrained reliability: complexity, factorization and exact computation in weak graphs. In: Proceedings of the Latin America Networking Conference on LANC 2014, pp. 1–7. ACM, New York (2014)Google Scholar
  10. 10.
    Cheng, C.-S.: Maximizing the total number of spanning trees in a graph: two related problems in graph theory and optimum design theory. J. Comb. Theor. B 31(2), 240–248 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Colbourn, C.J.: Reliability issues in telecommunications network planning. In: Telecommunications Network Planning, chap. 9, pp. 135–146. Kluwer Academic Publishers (1999)Google Scholar
  12. 12.
    Harary, F.: The maximum connectivity of a graph. Proc. Natl. Acad. Sci. U.S.A. 48(7), 1142–1146 (1962)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Holton, D.A., Sheehan, J.: The Petersen Graph. Australian Mathematical Society Lecture Series. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  14. 14.
    Kirchoff, G.: Über die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)CrossRefGoogle Scholar
  15. 15.
    Knuth, D.E.: The Art of Computer Programming: Introduction to Combinatiorial Algorithms and Boolean Functions. Addison-Wesley Series in Computer Science and Information Proceedings. Addison-Wesley, Reading (2008)Google Scholar
  16. 16.
    Leggett, J.D., Bedrosian, S.D.: On networks with the maximum numbers of trees. In: Proceedings of Eighth Midwest Symposium on Circuit Theory, pp. 1–8, June 1965Google Scholar
  17. 17.
    Monma, C., Munson, B.S., Pulleyblank, W.R.: Minimum-weight two-connected spanning networks. Math. Program. 46(1–3), 153–171 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Myrvold, W., Cheung, K.H., Page, L.B., Perry, J.E.: Uniformly-most reliable networks do not always exist. Networks 21(4), 417–419 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Petingi, L., Boesch, F., Suffel, C.: On the characterization of graphs with maximum number of spanning trees. Discrete Math. 179(1), 155–166 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Romero, P.: Building uniformly most-reliable networks by iterative augmentation. In: Proceedings of the 9th International Workshop on Resilient Networks Design and Modeling (RNDM 2017), Alghero, Sardinia, Italy, September 2017 (to appear)Google Scholar
  21. 21.
    Wang, G.: A proof of Boesch’s conjecture. Networks 24(5), 277–284 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Facultad de Ingeniería, Instituto de Matemática y Estadística, IMERLUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations