Advertisement

A Heuristic Based on Fuzzy Inference Systems for Multiobjective IMRT Treatment Planning

  • Joana Dias
  • Humberto Rocha
  • Tiago Ventura
  • Brígida Ferreira
  • Maria do Carmo Lopes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)

Abstract

Radiotherapy is one of the treatments used against cancer. Each treatment has to be planned considering the medical prescription for each specific patient and the information contained in the patient’s medical images. The medical prescription usually is composed by a set of dosimetry constraints, imposing maximum or minimum radiation doses that should be satisfied. Treatment planning is a trial-and-error time consuming process, where the planner has to tune several parameters (like weights and bounds) until an admissible plan is found. Radiotherapy treatment planning can be interpreted as a multiobjective optimization problem, because besides the set of dosimetry constraints there are also several conflicting objectives: maximizing the dose deposited in the volumes to treat and, at the same time, minimizing the dose delivered to healthy cells. In this paper we present a new multiobjective optimization procedure that will, in an automated way, calculate a set of potential non-dominated treatment plans. It is also possible to consider an interactive procedure whenever the planner wants to explore new regions in the non-dominated frontier. The optimization procedure is based on fuzzy inference systems. The new methodology is described and it is applied to a head-and-neck cancer case.

Keywords

Multiobjective Radiotherapy planning Fuzzy inference systems 

Notes

Acknowledgments

This work has been supported by the Fundação para a Ciência e a Tecnologia (FCT) under project grant UID/MULTI/00308/2013.

References

  1. 1.
    Dias, J., Rocha, H., Ventura, T., Ferreira, B., Lopes, M.C.: Automated fluence map optimization based on fuzzy inference systems. Med. Phys. 43, 1083–1095 (2016)CrossRefGoogle Scholar
  2. 2.
    Li, R.-P., Yin, F.-F.: Optimization of inverse treatment planning using a fuzzy weight function. Med. Phys. 27, 691–700 (2000)CrossRefGoogle Scholar
  3. 3.
    Yan, H., Yin, F.-F., Guan, H., Kim, J.H.: Fuzzy logic guided inverse treatment planning. Med. Phys. 30, 2675–2685 (2003)CrossRefGoogle Scholar
  4. 4.
    Yan, H., Yin, F.-F., Willett, C.: Evaluation of an artificial intelligence guided inverse planning system: clinical case study. Radiother. Oncol. 83, 76–85 (2007)CrossRefGoogle Scholar
  5. 5.
    Stieler, F., Yan, H., Lohr, F., Wenz, F., Yin, F.-F.: Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning. Radiat. Oncol. 4, 39 (2009)CrossRefGoogle Scholar
  6. 6.
    Kierkels, R.G.J., Visser, R., Bijl, H.P., Langendijk, J.A., van’t Veld, A.A., Steenbakkers, R.J.H.M., Korevaar, E.W.: Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy. Radiat. Oncol. 10, 87 (2015)CrossRefGoogle Scholar
  7. 7.
    Thieke, C., Kufer, K.H., Monz, M., Scherrer, A., Alonso, F., Oelfke, U., Huber, P.E., Debus, J., Bortfeld, T.: A new concept for interactive radiotherapy planning with multicriteria optimization: First clinical evaluation. Radiother. Oncol. 85, 292–298 (2007)CrossRefGoogle Scholar
  8. 8.
    Romeijn, H.E., Dempsey, J.F., Li, J.G.: A unifying framework for multi-criteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)CrossRefGoogle Scholar
  9. 9.
    Craft, D., Halabi, T., Shih, H.A., Bortfeld, T.: An approach for practical multiobjective IMRT treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 69, 1600–1607 (2007)CrossRefGoogle Scholar
  10. 10.
    Craft, D.L., Halabi, T.F., Shih, H.A., Bortfeld, T.R.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)CrossRefGoogle Scholar
  11. 11.
    Craft, D., Richter, C.: Deliverable navigation for multicriteria step and shoot IMRT treatment planning. Phys. Med. Biol. 58, 87 (2013)CrossRefGoogle Scholar
  12. 12.
    Craft, D., Monz, M.: Simultaneous navigation of multiple Pareto surfaces, with an application to multicriteria IMRT planning with multiple beam angle configurations. Med. Phys. 37, 736–741 (2010)CrossRefGoogle Scholar
  13. 13.
    Teichert, K., Süss, P., Serna, J.I., Monz, M., Küfer, K.H., Thieke, C.: Comparative analysis of Pareto surfaces in multi-criteria IMRT planning. Phys. Med. Biol. 56, 3669 (2011)CrossRefGoogle Scholar
  14. 14.
    Holdsworth, C., Kim, M., Liao, J., Phillips, M.H.: A hierarchical evolutionary algorithm for multiobjective optimization in IMRT. Med. Phys. 37, 4986–4997 (2010)CrossRefGoogle Scholar
  15. 15.
    Holdsworth, C., Kim, M., Liao, J., Phillips, M.: The use of a multiobjective evolutionary algorithm to increase flexibility in the search for better IMRT plans. Med. Phys. 39, 2261–2274 (2012)CrossRefGoogle Scholar
  16. 16.
    Aubry, J.-F., Beaulieu, F., Sevigny, C., Beaulieu, L., Tremblay, D.: Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning. Med. Phys. 33, 4718–4729 (2006)CrossRefGoogle Scholar
  17. 17.
    Breedveld, S., Storchi, P.R.M., Voet, P.W.J., Heijmen, B.J.M.: iCycle: integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med. Phys. 39, 951–963 (2012)CrossRefGoogle Scholar
  18. 18.
    Deasy, J.O.: Multiple local minima in radiotherapy optimization problems with dose–volume constraints. Med. Phys. 24, 1157 (1997)CrossRefGoogle Scholar
  19. 19.
    Zarepisheh, M., Shakourifar, M., Trigila, G., Ghomi, P.S., Couzens, S., Abebe, A., Noreña, L., Shang, W., Jiang, S.B., Zinchenko, Y.: A moment-based approach for DVH-guided radiotherapy treatment plan optimization. Phys. Med. Biol. 58, 1869–1887 (2013)CrossRefGoogle Scholar
  20. 20.
    Scherrer, A., Yaneva, F., Grebe, T., Küfer, K.-H.: A new mathematical approach for handling DVH criteria in IMRT planning. J. Glob. Optim. 61, 407–428 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy treatment planning problems. Oper. Res. 54, 201–216 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ross, T., Soland, R.: A multicriteria approach to the location of public facilities. Eur. J. Oper. Res. 4, 307–321 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hoffmann, A.L., Siem, A.Y.D., den Hertog, D., Kaanders, J.H.A.M., Huizenga, H.: Derivative-free generation and interpolation of convex Pareto optimal IMRT plans. Phys. Med. Biol. 51, 6349 (2006)CrossRefGoogle Scholar
  24. 24.
    Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: a computational environment for radiotherapy research. Med. Phys. 30, 979–985 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joana Dias
    • 1
    • 2
  • Humberto Rocha
    • 1
    • 2
  • Tiago Ventura
    • 3
  • Brígida Ferreira
    • 4
  • Maria do Carmo Lopes
    • 3
    • 5
  1. 1.Faculdade de Economia, CeBERUniversidade de CoimbraCoimbraPortugal
  2. 2.INESC-CoimbraCoimbraPortugal
  3. 3.Serviço de Física MédicaIPOC-FG, EPECoimbraPortugal
  4. 4.School for Allied Health TechnologiesPortoPortugal
  5. 5.Departamento de Física, I3NUniversidade de AveiroAveiroPortugal

Personalised recommendations