Advertisement

Hybrid Global/Local Derivative-Free Multi-objective Optimization via Deterministic Particle Swarm with Local Linesearch

  • Riccardo Pellegrini
  • Andrea Serani
  • Giampaolo Liuzzi
  • Francesco Rinaldi
  • Stefano Lucidi
  • Emilio F. Campana
  • Umberto Iemma
  • Matteo DiezEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)

Abstract

A multi-objective deterministic hybrid algorithm (MODHA) is introduced for efficient simulation-based design optimization. The global exploration capability of multi-objective deterministic particle swarm optimization (MODPSO) is combined with the local search accuracy of a derivative-free multi-objective (DFMO) linesearch method. Six MODHA formulations are discussed, based on two MODPSO formulations and three DFMO activation criteria. Forty five analytical test problems are solved, with two/three objectives and one to twelve variables. The performance is evaluated by two multi-objective metrics. The most promising formulations are finally applied to the hull-form optimization of a high-speed catamaran in realistic ocean conditions and compared to MODPSO and DFMO, showing promising results.

Keywords

Hybrid global/local optimization Multi-objective optimization Particle swarm optimization Linesearch method Derivative-free optimization Deterministic optimization 

Notes

Acknowledgements

The work is supported by the US Office of Naval Research Global, NICOP grant N62909-15-1-2016, under the administration of Dr. Woei-Min Lin, Dr. Salahuddin Ahmed, and Dr. Ki-Han Kim, and by the Italian Flagship Project RITMARE, founded by the Italian Ministry of Education.

References

  1. 1.
    Qian, C., Yu, Y., Zhou, Z.H.: Pareto ensemble pruning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2935–2941. AAAI Press (2015)Google Scholar
  2. 2.
    Qian, C., Tang, K., Zhou, Z.-H.: Selection hyper-heuristics can provably be helpful in evolutionary multi-objective optimization. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 835–846. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_78CrossRefGoogle Scholar
  3. 3.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Fasano, G., Diez, M.: Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. Appl. Soft Comput. 49, 313–334 (2016)CrossRefGoogle Scholar
  5. 5.
    Serani, A., Diez, M., Campana, E.F., Fasano, G., Peri, D., Iemma, U.: Globally convergent hybridization of particle swarm optimization using line search-based derivative-free techniques. In: Yang, X.S. (ed.) Recent Advances in Swarm Intelligence and Evolutionary Computation. SCI, vol. 585, pp. 25–47. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-13826-8_2CrossRefGoogle Scholar
  6. 6.
    Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F., Diez, M.: Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms. Appl. Ocean Res. 59, 115–128 (2016)CrossRefGoogle Scholar
  7. 7.
    Liu, D., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(1), 42–50 (2007)CrossRefGoogle Scholar
  8. 8.
    Kaveh, A., Laknejadi, K.: A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization. Expert Syst. Appl. 38(12), 15475–15488 (2011)CrossRefGoogle Scholar
  9. 9.
    Cheng, S., Zhan, H., Shu, Z.: An innovative hybrid multi-objective particle swarm optimization with or without constraints handling. Appl. Soft Comput. 47, 370–388 (2016)CrossRefGoogle Scholar
  10. 10.
    Santana-Quintero, L.V., Ramírez, N., Coello, C.C.: A multi-objective particle swarm optimizer hybridized with scatter search. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 294–304. Springer, Heidelberg (2006).  https://doi.org/10.1007/11925231_28CrossRefGoogle Scholar
  11. 11.
    Izui, K., Nishiwaki, S., Yoshimura, M., Nakamura, M., Renaud, J.E.: Enhanced multiobjective particle swarm optimization in combination with adaptive weighted gradient-based searching. Eng. Optim. 40(9), 789–804 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mousa, A., El-Shorbagy, M., Abd-El-Wahed, W.: Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evol. Comput. 3, 1–14 (2012)CrossRefGoogle Scholar
  13. 13.
    Xu, G., Yang, Y.Q., Liu, B.B., Xu, Y.H., Wu, A.J.: An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. J. Comput. Appl. Math. 280, 310–326 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pellegrini, R., Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Diez, M.: Formulation and parameter selection of multi-objective deterministic particle swarm for simulation-based optimization. Appl. Soft Comput. 58, 714–731 (2017)CrossRefGoogle Scholar
  15. 15.
    Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. 26(4), 2744–2774 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056872CrossRefGoogle Scholar
  17. 17.
    Diez, M., Campana, E.F., Stern, F.: Development and evaluation of hull-form stochastic optimization methods for resistance and operability. In: Proceedings of the 13th International Conference on Fast Sea Transportation (FAST 2015) (2015)Google Scholar
  18. 18.
    Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-criteria Decis. Anal. 7(1), 34–47 (1998)CrossRefGoogle Scholar
  19. 19.
    Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)CrossRefGoogle Scholar
  20. 20.
    Campana, E.F., Diez, M., Iemma, U., Liuzzi, G., Lucidi, S., Rinaldi, F., Serani, A.: Derivative-free global ship design optimization using global/local hybridization of the DIRECT algorithm. Optim. Eng. 17(1), 127–156 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pinto, A., Peri, D., Campana, E.F.: Multiobjective optimization of a containership using deterministic particle swarm optimization. J. Ship Res. 51(3), 217–228 (2007)Google Scholar
  22. 22.
    Wong, T., Luk, W., Heng, P.: Sampling with Hammersley and Halton points. J. Graphics Tools 2(2), 9–24 (1997)CrossRefGoogle Scholar
  23. 23.
    Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens (2006). http://clerc.maurice.free.fr/pso
  24. 24.
    Fonseca, C.M., Paquete, L., Lòpez-Ibàñez, M.: An improved dimension - sweep algorithm for the hypervolume indicator. In: Proceedings of the Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163. IEEE (2006)Google Scholar
  25. 25.
    Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transa. Evol. Comput. 10(5), 477–506 (2006)CrossRefGoogle Scholar
  26. 26.
    Volpi, S., Diez, M., Gaul, N., Song, H., Iemma, U., Choi, K.K., Campana, E.F., Stern, F.: Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification. Struct. Multidisciplinary Optim. 51(2), 347–368 (2015)CrossRefGoogle Scholar
  27. 27.
    Raquel, C.R., Naval Jr., P.C.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 257–264. ACM (2005)Google Scholar
  28. 28.
    Žilinskas, A.: Visualization of a statistical approximation of the pareto front. Appl. Math. Comput. 271, 694–700 (2015)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Riccardo Pellegrini
    • 1
  • Andrea Serani
    • 1
  • Giampaolo Liuzzi
    • 2
  • Francesco Rinaldi
    • 3
  • Stefano Lucidi
    • 4
  • Emilio F. Campana
    • 1
  • Umberto Iemma
    • 5
  • Matteo Diez
    • 1
    Email author
  1. 1.CNR-INSEAN, National Research CouncilMarine Technology Research InstituteRomeItaly
  2. 2.CNR-IASI, National Research CouncilInstitute for Systems Analysis and Computer ScienceRomeItaly
  3. 3.Department of MathematicsUniversity of PaduaPaduaItaly
  4. 4.Department of Computer, Control and Management Engineering “A. Ruberti”Sapienza UniversityRomeItaly
  5. 5.Department of EngineeringRoma Tre UniversityRomeItaly

Personalised recommendations