Advertisement

Evolving Training Sets for Improved Transfer Learning in Brain Computer Interfaces

  • Jason AdairEmail author
  • Alexander Brownlee
  • Fabio Daolio
  • Gabriela Ochoa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)

Abstract

A new proof-of-concept method for optimising the performance of Brain Computer Interfaces (BCI) while minimising the quantity of required training data is introduced. This is achieved by using an evolutionary approach to rearrange the distribution of training instances, prior to the construction of an Ensemble Learning Generic Information (ELGI) model. The training data from a population was optimised to emphasise generality of the models derived from it, prior to a re-combination with participant-specific data via the ELGI approach, and training of classifiers. Evidence is given to support the adoption of this approach in the more difficult BCI conditions: smaller training sets, and those suffering from temporal drift. This paper serves as a case study to lay the groundwork for further exploration of this approach.

Keywords

Optimisation Machine learning Ensemble Brain-computer interface P300 Evolutionary computation Transfer learning 

Notes

Acknowledgements

This research was funded by the ESPRC through the DAASE project [grant number EP/J017515/1]. The authors are grateful for the assistance of Kate Howie in preparating the statistical analyses.

Data Access Statement. The dataset and source code used in this paper are available on request from the lead author.

References

  1. 1.
    Waytowich, N.R., Lawhern, V.J., Bohannon, A.W., Ball, K.R., Lance, B.J.: Spectral transfer learning using information geometry for a user-independent brain-computer interface. Front. Neurosci. 10 (2016)Google Scholar
  2. 2.
    Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012)CrossRefGoogle Scholar
  3. 3.
    Schwartz, A.B., Cui, X.T., Weber, D.J., Moran, D.W.: Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1), 205–220 (2006)CrossRefGoogle Scholar
  4. 4.
    Khatwani, P., Tiwari, A.: A survey on different noise removal techniques of EEG signal. Int. J. Adv. Res. Comput. Commun. Eng. 2(2), 1091–1095 (2013)Google Scholar
  5. 5.
    Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., Grosse-Wentrup, M.: Transfer learning in brain-computer interfaces. IEEE Comp. Intell. Mag. 11(1), 20–31 (2016)CrossRefGoogle Scholar
  6. 6.
    Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3, 9 (2016). SpringerCrossRefGoogle Scholar
  7. 7.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)CrossRefGoogle Scholar
  8. 8.
    Cantillo-Negrete, J., Gutierrez-Martinez, J., Carino-Escobar, R., Carrillo-Mora, P., Elias-Vinas, D.: An approach to improve the performance of subject-independent BCIs-based motor imagery allocating subjects by gender. Biomed. Eng. 13(1), 158 (2014)Google Scholar
  9. 9.
    Lotte, B.F.: To minimize or suppress calibration time in oscillatory activity-based brain computer interfaces. Proc. IEEE 103(6), 871–890 (2015)CrossRefGoogle Scholar
  10. 10.
    Rakotomamonjy, A., Guigue, V.: BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller. IEEE Trans. Biomed. Eng. 55(3), 1147–1154 (2008)CrossRefGoogle Scholar
  11. 11.
    Onishi, A., Natsume, K.: Overlapped partitioning for ensemble classifiers of P300-based brain-computer interfaces. PLoS One 9(4), e93045 (2014)CrossRefGoogle Scholar
  12. 12.
    Xu, M., Liu, J., Chen, L., Qi, H., He, F., Zhou, P., Cheng, X., Wan, B., Ming, D.: Inter-subject information contributes to the ERP classification in the P300 speller. In: International IEEE/EMBS Conference on Neural Engineering 2015 July, pp. 206–209 (2015)Google Scholar
  13. 13.
    Hoffmann, U., Vesin, J., Ebrahimi, T., Diserens, K.: An efficient P300-based brain-computer interface for disabled subjects. J. Neurosci. Methods 167, 115–125 (2008)CrossRefGoogle Scholar
  14. 14.
    Xu, M., Liu, J., Chen, L., Qi, H., He, F., Zhou, P., Wan, B., Ming, D.: Incorporation of inter-subject information to improve the accuracy of subject-specific P300 classifiers. Int. J. Neural Syst. 26(3), 1–12 (2016)CrossRefGoogle Scholar
  15. 15.
    Locascio, J.J., Atri, A.: An overview of longitudinal data analysis methods for neurological research. Dement Geriatr. Cogn. Dis. Extra 1(1), 330–357 (2011)CrossRefGoogle Scholar
  16. 16.
    Hothorn, T., Bretz, F., Westfall, P.: Simultaneous inference in general parametric models. Biometrical J. 50(3), 346–363 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jason Adair
    • 1
    Email author
  • Alexander Brownlee
    • 1
  • Fabio Daolio
    • 1
  • Gabriela Ochoa
    • 1
  1. 1.Computing Science and MathematicsUniversity of StirlingStirlingScotland, UK

Personalised recommendations