Skip to main content

Porous Media

  • Chapter
  • First Online:

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 31))

Abstract

The chapter starts by defining a porous medium and discusses the continuum description of phenomena and flow and transport of extensive quantities such as mass, momentum and energy at the microscopic and macroscopic continuum levels. The derivation of the unscaled continuum description at the macroscopic level by volume and mass averaging is presented and discussed, although the book is based primarily on deriving the continuum description of transport in porous media by the phenomenological approach. Scales of description are discussed for inhomogeneous porous media. The general procedure for mathematical modeling is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Contributed by Dr. Jonathan Ajo-Franklin, LBNL.

  2. 2.

    Dr. George J. Moridis of LBNL co-authored Sects. 1.3.31.3.6.

References

  • Abdassah D, Ershaghis I (1986) Triple-porosity system for representing naturally fractured reservoirs. SPE Form Eval 1:113–127

    Article  Google Scholar 

  • Adler PM, Thovert J-M (1999) Fractures and networks. Kluwer Academic Publishers, Dordrecht, 429 p

    Google Scholar 

  • Aguilera R (1995) Naturally fractured reservoirs, 2nd edn. Pennwell Books, Tulsa, 520 p

    Google Scholar 

  • Al-Ghamdi A, Ershaghi I (1996) Pressure transient analysis of dually fractured reservoirs. SPE J 1(1):93–100

    Article  Google Scholar 

  • Armstrong RT, Ott H, Georgiadis A, Rucker M, Schwing A, Berg S (2014) Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow. Water Resour Res 50:9162–9176

    Article  Google Scholar 

  • Bachmat Y, Bear J (1964) The general equation of hydrodynamic dispersion in homogeneous isotropic porous mediums. J Geophys Res 69:2561–2567

    Article  Google Scholar 

  • Bakhvalov N, Panasenko G (1989) Homogenisation: averaging processes in periodic media. Kluwer Publishing Company, Dordrecht

    Book  Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech (PMM) 24:852–864

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, 764 p (also published by Dover Publications, 1988; translated into Chinese)

    Google Scholar 

  • Bear J, Bachmat Y (1991) Introduction to modeling phenomena of transport in porous media. Kluwer Publishing Company, Dordrecht, 553 p

    Google Scholar 

  • Bear J, Cheng AH-D (2010) Modeling groundwater flow and contaminant transport. Springer, Berlin, 834 p

    Google Scholar 

  • Bear J, Zaslavsky D, Irmay S (1968) Physical principles of water percolation and seepage. UNESCO, 465 p

    Google Scholar 

  • Bear J, Tsang CF, de Marsily G (eds) (1993) Flow and contaminant transport in fractured rock. Academic Press Inc, San Diego, 560 p

    Google Scholar 

  • Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis of periodic structures. North-Holland, Amsterdam

    Google Scholar 

  • Berg S, Ott H, Klapp SA, Schwing A, Neiteler R, Brusse N, Makurat A, Leu L, Enzmann F, Schwarz J-O, Kersten M, Irvine S, Stanpanoni M (2013) Real-time 3D imaging of Haines jumps in porous media flow. Proc Nat Acad Sci 110(10):3755–3759

    Article  Google Scholar 

  • Blunt MJ (2001) Flow in porous media - pore-network models and multiphase flow, current opinion. Colloid Interface Sci 6:197–207

    Google Scholar 

  • Blunt MJ, Bijeljic B, Dong H, Gharbi O, Iglauer S, Mostaghimi P, Paluszny A, Pentland C (2013) Pore-scale imaging and modelling. Adv Water Resour 51:197–216

    Article  Google Scholar 

  • Boussinesq J (1904) Recherches théoriques sur l’ecoulement des nappes d’eau infiltrées dans les sol, et sur le débit des sources. CRH Acad Sci, Paris, J Math Pure et Appl 10:5–78 (1903), 1(0):363–394

    Google Scholar 

  • Celia M, Reeves PC, Ferrand LA (1995) Recent advances in pore scale models for multiphase flow in porous media. Rev Geophys 33:1049–1057

    Article  Google Scholar 

  • Cipolla C, Mack M, Maxwell S (2010) Reducing exploration and appraisal risk in low-permeability reservoirs using microseismic fracture mapping. In: SPE 137437, presented at the Canadian unconventional resources and international petroleum conference, Calgary, Canada, October, 10–21, 2010

    Google Scholar 

  • Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Revs 123:1–17

    Article  Google Scholar 

  • Courant R, Hilbert D (1962) Methods of mathematical physics. Wiley Interscience, N.Y., 560 p

    Google Scholar 

  • Coussy O (2004) Poromechanics. Wiley, New York, 312 p

    Google Scholar 

  • Coussy O (2007) Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. Int J Numer Anal Meth Geomech 31(15):1675–1694

    Article  Google Scholar 

  • Cushman JH (1997) The physics of fluids in hierarchial porous media. Kluwer Academic Publishers., Dordrecht, 467 p

    Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, New York, 465 p

    Google Scholar 

  • Dagan G, Neuman SP (eds) (1997) Subsurface flow and transport: a stochastic approach. Cambridge University Press, Cambridge, 241 p

    Google Scholar 

  • Debye P, Anderson HR Jr, Brumberger H (1957) Scattering by an inhomogeneous solid II. The correlation function and its application. Appl Phys 28(6):679–683

    Article  Google Scholar 

  • Doughty C (1999) Investigation of conceptual and numerical approaches for evaluating moisture, gas, chemical, and heat transport in fractured unsaturated rock. J Contam Hydrol 38(1–3):69–106

    Article  Google Scholar 

  • Dupuit J (1863) Études Théoriques et Pratiques sur les Mouvementdes des Eaux dans les Cannaux Découverts et à Travers les Terrains Perméables, 1st edn 1948, 2nd edn. Dunod, Paris, 304 p

    Google Scholar 

  • Eringen AC (1980) Mechanics of continua, 2nd edn. Krieger Publishing Company, Malabar, 592 p

    Google Scholar 

  • Feller W (1957) An introduction to probability theory and its applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Forchheimer P (1886) Uber die Ergiebigkeit von Brunnenanlagen und Sickerschlitzen. Hannover Zeitz. d. Archit u Ing Ver 8(2):538–564

    Google Scholar 

  • Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Deutsch Ing 45:1782–1788

    Google Scholar 

  • Fredrich JT (1999) 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes. Phys Chem Earth (A) 24(7):551–561

    Article  Google Scholar 

  • Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gelhar LW, Axnes CL (1983) Three dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180

    Article  Google Scholar 

  • Gray WG (1975) A derivation of the equations for multi-phase transport. Chem Eng Sci 30:229

    Article  Google Scholar 

  • Gray WG, Hassanizadeh SM (1989) Averaging theorems and averaged equations for transport of interface properties in multiphase systems. Int J Multiphase Flow 15:81–95

    Article  Google Scholar 

  • Hassanizadeh SM (1986a) Derivation of basic equations of mass transport in porous media; Part I. Macroscopic balance laws. Adv Water Resour 9:196–206

    Article  Google Scholar 

  • Hassanizadeh SM (1986b) Derivation of basic equations of mass transport in porous media; Part II. Generalized Darcy’s law and Fick’s law. Adv Water Resour 9:207–222

    Article  Google Scholar 

  • Hassanizadeh M, Gray W (1979a) General conservation equations for multiphase systems: 1. Averaging procedure. Adv Water Resour 2:131–144

    Google Scholar 

  • Hassanizadeh M, Gray W (1979b) General conservation equations for multiphase systems: 2. Mass, momentum, energy and entropy equations. Adv Water Resour 2:191–203

    Google Scholar 

  • Hassanizadeh SM, Gray WG (1980) General conservation equations for multi-phase systems, 3. Constitutive theory for porous media flow. Adv Water Resour 3:25–40

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1990) Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Res 13:169–186

    Article  Google Scholar 

  • Holzer L, Cantoni M (2011) Review of FIB-tomography. Nano-fabrication using focused ion and electron beams: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  • Jikov VV, Kozlov SM, Oleinik OA (1994) Homogenization of differential operators and integral functionals. Springer, Berlin

    Book  Google Scholar 

  • Joekar-Niasar V, Hassanizadeh SM, Leijnse A (2008) Insights into the relationships among capillary pressure, saturation, interfacial area and relative permeability using pore-scale network modelling. Trans Porous Media 74:201–219

    Article  Google Scholar 

  • Joekar-Niasar V, Hassanizadeh SM, Dahle HK (2010) Dynamic pore-network modeling of drainage in two-phase flow. J Fluid Mech 655:38–71

    Article  Google Scholar 

  • Kjetil N, Ringrose SR (2008) Identifying the representative elementary volume for permeability of heterolithic deposits using numerical rock models. Math Geosci 40:753–771

    Article  Google Scholar 

  • Leal LG (2007) Advanced transport phenomena: fluid mechanics and convective transport processes, Cambridge University Press, Cambridge

    Google Scholar 

  • Lions J-L (1981) Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe Science Press, Beijing

    Google Scholar 

  • Low PF (1961) Physical chemistry of clay-water interactions. Adv Agron 13:269–327

    Article  Google Scholar 

  • Low PF (1976) Viscosity of interlayer water in montmorillonite. Soil Sci Soc Am J 40:500–505

    Article  Google Scholar 

  • MacDowell AA, Parkinsona DY, Habouba A, Schaiblea E, Nasiatkaa JR, Yeea CA, Jamesona JR, Ajo-Franklina JB, Brodersenb CA, McElronec AJ (2012) X-ray micro-tomography at the advanced light source, developments in X-ray tomography VIII. In: Stock SR (ed) Proceedings of SPIE, p 850618

    Google Scholar 

  • Marle CM (1981) Multiphase flow in porous media. Editions Technip, Paris, 267 p

    Google Scholar 

  • Marsden JE, Tromba A (2003) Vector calculus, 5th edn. W. H. Freeman, New York, 790 p

    Google Scholar 

  • Mikelic A (2000) Homogenization theory and applications to filtration through porous media. In: Fasano A (ed) Filtration in porous media and industrial application, vol 1734. Lecture notes in mathematics. Springer, Berlin, pp 127–214

    Google Scholar 

  • Molins S, Trebotich D, Steefel CI, Shen C (2012) An investigation of the effect of pore-scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour Res 48(3)

    Google Scholar 

  • Molins S, Trebotich D, Yang L, Ajo-Franklin J, Ligocki TJ, Shen C, Steefel CI (2014) Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ Sci Tech 48(13):7453–7460

    Article  Google Scholar 

  • Murdoch AI, Hassanizadeh SM (2002) Macroscale balance relations for bulk, interfacial, and common line systems in multiphase flow through porous media on the basis of molecular considerations. Int J Multiph Flow 28:1091–1123

    Article  Google Scholar 

  • Muskat M (1949) Physical principles of oil production. McGraw-Hill, New York, 922 p

    Google Scholar 

  • Nayfeh AH (2000) Perturbation methods. Wiley, New York, 437 p

    Google Scholar 

  • Parker JG (1986) Hydrostatics of water in porous media. In: Sparks DL (ed) Soil physical chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Qin C, Hassanizadeh SM (2013) Multiphase flow through multilayers of thin porous media: General balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int J Heat Mass Tran, 70: 693–708

    Google Scholar 

  • Qin C, Hassanizadeh SM (2015) A new approach to modelling water flooding in a polymer electrolyte fuel cell. Int J Hydrog Energy 40(8):3348–3358

    Article  Google Scholar 

  • Raeini AQ, Blunt MJ, Bijeljic B (2014) Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Adv Water Resour 74:116–126

    Article  Google Scholar 

  • Raoof A, Hassanizadeh SM (2012) A new formulation for pore-network modeling of two-phase flow. Water Resour Res 48:13

    Google Scholar 

  • Raoof A, Hassanizadeh SM, Leijnse A (2010) Upscaling transport of adsorbing solutes in porous media: pore network modeling. Vadose Zone J 9:624–636

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous medium. Physics 1:318–333

    Article  Google Scholar 

  • Rubin Y (2003) Applied Stochastic Hydrogeology. Oxford University Press, Oxford, 391 p

    Google Scholar 

  • Sanchez-Palencia E (1974) Comportement local et macroscopique d’un type de milieu physiques héterogénes. Int J Eng Sci 12:331–352

    Article  Google Scholar 

  • Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, vol 127. Lecture notes in physics. Springer, N.Y

    Google Scholar 

  • Schluter S, Sheppard A, Brown K, Wildenschild D (2014) Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour Res 50:3615–3639

    Article  Google Scholar 

  • Selyakov VI, Kadet VV (1996) Percolation models for transport in porous media. Kluwer Academic Publishers, Dordrecht, 241 p

    Google Scholar 

  • Stock SR (2008) Recent advances in X-ray micro-tomography applied to materials. Intern Mater Rev 53(3):129–181

    Article  Google Scholar 

  • Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J (2009) Advances in neutron radiography and tomography. J Phys D Appl Phys 42(24):3001–3022

    Article  Google Scholar 

  • Sun N-Z (1999) Inverse problems in groundwater modeling, 2nd edn. Springer, Berlin, 338 p

    Google Scholar 

  • Sun N-Z, Sun A (2015) Model calibration and parameter estimation: for environmental and water resource systems. Springer, Berlin, 621 p

    Google Scholar 

  • Sutton RP, Cox SA, Barre, RD (2010) SPE paper 138447 presented at the SPE tight gas completions conference held in San Antonio, Texas, USA, 2–3 November 2010

    Google Scholar 

  • Ten Dam A, Erentz C (1970) Kizildere geothermal field, Western Anatolia. Geothermics 2(1):124–129 U.S. EIA, 2011

    Article  Google Scholar 

  • Thewlis J (ed) (1973) Concise dictionary of physics. Pergamon Press, Oxford, 248 p

    Google Scholar 

  • Truesdell C (1977) Rational thermodynamics. Springer, Berlin, 578 p

    Google Scholar 

  • Warlick DN (2006) Gas shale and CBM development in North America. Oil Gas J 3(11):1–8

    Google Scholar 

  • Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. J Soc Pet Eng 3:245–255

    Article  Google Scholar 

  • Whitaker S (1999) The method of volume averaging. Kluwer Acad. Publishers, Dordrecht, 219 p

    Google Scholar 

  • Wildenschild D, Sheppard AP (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246

    Article  Google Scholar 

  • Williams BB, Gidley JL, Schechter RS (1979) Acidizing fundamentals. Soc Petrol Eng Monograph Ser. 6(2):124 p

    Google Scholar 

  • Wu YS, Liu HH, Bodvarsson GS (2004) A triple-continuum approach for modeling flow and transport processes in fractured rock. J Contam Hydrol 73(1):145–179

    Article  Google Scholar 

  • Wu YS, Efendiev Y, Kang Z, Ren Y (2006) A multiple-continuum approach for modeling multiphase flow in naturally fractured vuggy petroleum reservoirs. In: SPE. Beijing Conference

    Google Scholar 

  • Yaglom AM (1965) Theory of stationary random functions. Prentice Hall, Englewood Cliff

    Google Scholar 

  • Zhang D, Zhang R, Chen S, Soll WE (2000) Pore scale study of flow in porous media: scale dependency, REV, and statistical REV. Geophys Res Lett 27(8):1195–1198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Bear .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bear, J. (2018). Porous Media. In: Modeling Phenomena of Flow and Transport in Porous Media. Theory and Applications of Transport in Porous Media, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-72826-1_1

Download citation

Publish with us

Policies and ethics