Building Theories pp 191-211 | Cite as

# Heuristic Logic. A Kernel

## Abstract

In this paper I lay out a non-formal kernel for a heuristic logic—a set of rational procedures for scientific discovery and ampliative reasoning—specifically, the rules that govern how we generate hypotheses to solve problems. To this end, first I outline the reasons for a heuristic logic (Sect. 1) and then I discuss the theoretical framework needed to back it (Sect. 2). I examine the methodological machinery of a heuristic logic (Sect. 3), and the meaning of notions like ‘logic’, ‘rule’, and ‘method’. Then I offer a characterization of a heuristic logic (Sect. 4) by arguing that heuristics are ways of building problem-spaces (Sect. 4.1). I examine (Sect. 4.2) the role of background knowledge for the solution to problems, and how a heuristic logic builds upon a unity of problem-solving and problem-finding (Sect. 4.3). I offer a first classification of heuristic rules (Sect. 5): primitive and derived. Primitive heuristic procedures are basically analogy and induction of various kinds (Sect. 5.1). Examples of derived heuristic procedures (Sect. 6) are inversion heuristics (Sect. 6.1) and heuristics of switching (Sect. 6.2), as well as other kinds of derived heuristics (Sect. 6.3). I then show how derived heuristics can be reduced to primitive ones (Sect. 7). I examine another classification of heuristics, the generative and selective (Sect. 8), and I discuss the (lack of) ampliativity and the derivative nature of selective heuristics (Sect. 9). Lastly I show the power of combining heuristics for solving problems (Sect. 10).

## Keywords

Heuristics Logic Discovery Reasoning Problem-solving## Notes

### Acknowledgements

I would like to thank David Danks, Carlo Cellucci, the two anonymous referees, and the speakers at the conference ‘Building Theories’ (Rome, 16–18 June 2016) for their valuable comments on an early version of this paper.

## References

- Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes.
*Psychological Review,**67,*380–400.CrossRefGoogle Scholar - Cellucci, C. (2013).
*Rethinking Logic*. Dordrecht: Springer.Google Scholar - Einstein, A. (2002). Induction and deduction in physics. In Albert Einstein (Ed.),
*Collected papers*(Vol. 7, pp. 108–109). Princeton: Princeton University Press.Google Scholar - Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality.
*Psychological Review,**103,*650–669.CrossRefGoogle Scholar - Gigerenzer, G., & Todd, P. M. (1999).
*Simple heuristics that make us smart*. New York: Oxford University Press.Google Scholar - Gigerenzer, G. (2000).
*Adaptive thinking: Rationality in the real world*. New York: Oxford University Press.Google Scholar - Gigerenzer, G., & Selten, R. (Eds.). (2001).
*Bounded rationality: The adaptive toolbox*. Cambridge, MA: MIT Press.Google Scholar - Gigerenzer, G. (2008). Why heuristics work.
*Perspective on Psychological Science,**3*(1), 1–29.CrossRefGoogle Scholar - Gillies, D. (1996).
*Artificial intelligence and scientific method*. Oxford: Oxford University Press.Google Scholar - Ippoliti, E. (2006).
*Il vero e il plausibile*. Morrisville (USA): Lulu.Google Scholar - Ippoliti, E., & Celluci, C. (2016).
*Logica*. Milano: Egea.Google Scholar - Jaccard, J., & Jacoby, J. (2010).
*Theory construction and model-building*. New York: Guilford Press.Google Scholar - Kantorovich, A. (1993).
*Scientific discovery: Logic and tinkering*. New York: State University of New York Press.Google Scholar - Kantorovich, A. (1994). Scientific discovery: A philosophical survey.
*Philosophia,**23*(1), 3–23.CrossRefGoogle Scholar - Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
*Econometrica,**47*(2), 263.CrossRefGoogle Scholar - Kahneman, D., & Tversky, A. (1986). Rational choice and the framing of decisions.
*The Journal of Business*,*59*(S4), S251.Google Scholar - Kahneman, D., & Tversky, A. (1992). Advances in prospect theory: Cumulative representation of uncertainty.
*Journal of Risk and Uncertainty,**5*(4), 297–323.CrossRefGoogle Scholar - Lakatos, I. (1976).
*Proofs and refutations: The logic of mathematical discovery*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Lakatos, I. (1978).
*The methodology of scientific research programmes*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Laudan, L. (1977).
*Progress and its problems*. Berkeley and LA: University of California Press.Google Scholar - Laudan, L. (1981). A problem-solving approach to scientific progress. In I. Hacking (Ed.),
*Scientific revolutions*(pp. 144–155). Oxford: Oxford University Press.Google Scholar - McGuire, W. J. (1968). Personality and susceptibility to social influence. In E. F. Borgatta & W. W. Mabert (Eds.),
*Handbook of personality: theory and research*(pp. 1130–1187). Chicago: Rand McNally.Google Scholar - Musgrave, A. (1988). Is there a logic of scientific discovery?
*LSE Quarterly,**2–3,*205–227.Google Scholar - Newell, A., & Simon, H. A. (1972).
*Human problem solving*. Englewood Cliffs, NJ: Prentice Hall.Google Scholar - Nickles, T. (1978). Scientific problems and constraints.
*PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association,**I,*134–148.CrossRefGoogle Scholar - Nickles, T. (Ed.). (1980).
*Scientific discovery: Logic and rationality*. Boston: Springer.Google Scholar - Nickles, T. (1981). What is a problem that we may solve it?
*Synthese*, Vol. 47, No. 1,*Scientific Method as a Problem-Solving and Question-Answering Technique*, pp. 85–118.Google Scholar - Nickles, T. (2014). Heuristic appraisal at the frontier of research. In E. Ippoliti (Ed.),
*Heuristic reasoning*(pp. 57–88). Berlin: Springer.Google Scholar - Perelman, G (2002). The entropy formula for the Ricci flow and its geometric applications. arXiv:math. DG/0211159.
- Perelman, G. (2003a). Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109.
- Perelman, G. (2003b). Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245.
- Polya, G. (1954).
*Mathematics and plausible reasoning*. Vol. I—*Induction and analogy in mathematics*), Vol. II—*Patterns of plausible inferences*. Princeton: Princeton University Press.Google Scholar - Popper, K. (1934).
*The logic of scientific discovery*(1959). London: Hutchinson & Co.Google Scholar - Popper, K. (1999).
*All life is problem solving*. London: Routledge.Google Scholar - Quarantotto, D. (2017). Aristotle’s problemata style and aural textuality. In R. Polansky & W. Wians (Eds.),
*Reading Aristotle*(pp. 75–122). Leiden: Brill.Google Scholar - Shelley, C. (2003).
*Multiple analogies in science and philosophy*. Amsterdam: John Benjamins B.V.CrossRefGoogle Scholar - Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for complex concepts: Antidotes for analogyinduced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony (Eds.),
*Similarity and analogical reasoning*(pp. 498–529). New York: Cambridge University Press.CrossRefGoogle Scholar - Simon, H., Langley, P., Bradshaw, G. L., & Zytkow, M. (1987).
*Scientific discovery: Computational explorations of the creative processes*. Boston: MIT Press.Google Scholar - Ugaglia, M. (2004).
*Modelli idrostatici del moto da Aristotele a Galileo*. Roma: Lateran University Press.Google Scholar - Ulazia, A. (2016). Multiple roles for analogies in the genesis of fluid mechanics: How analogies can cooperate with other heuristic strategies.
*Foundation of Science,**21*(4), 543–565. https://doi.org/10.1007/s10699-015-9423-1.Google Scholar - Weisberg, R. (2006).
*Creativity: Understanding innovation in problem solving, science, invention, and the arts*. Hoboken: John Wiley & Sons Inc.Google Scholar - Wertheimer, M. (1982).
*Productive thinking*(Enlarged Ed.), Chicago: University of Chicago Press.Google Scholar - Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms.
*Neural Computation,**8,*1341–1390.CrossRefGoogle Scholar - Wolpert, D., & Macready, W. (1996). No Free Lunch Theorems for Search.
*Technical Report SFI-TR-95-02-010*. Sante Fe, NM, USA: Santa Fe Institute.Google Scholar - Zahar, E. (1989).
*Einstein’s Revolution: A Study In Heuristic*. La Salle (Ilinois): Open Court.Google Scholar