Advertisement

Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults

  • Huda Chuangpishit
  • Jurek Czyzowicz
  • Evangelos Kranakis
  • Danny Krizanc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10718)

Abstract

A set of mobile robots is placed at points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of “spies”, i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots need to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until the non-faulty robots have rendezvoused. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. We provide a bounded competitive ratio algorithm, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. When an upper bound on the number of byzantine robots is known to the central authority, we provide algorithms with better competitive ratios. In some instances we are able to show these algorithms are optimal.

Keywords

Competitive ratio Faulty GPS Line Rendezvous Robot 

References

  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33(3), 673–683 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_28 CrossRefGoogle Scholar
  5. 5.
    Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal byzantine-rezilient convergence in uni-dimensional robot network. Theor. Comput. Sci. 411(34–36), 3154–3168 (2010)CrossRefMATHGoogle Scholar
  6. 6.
    Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line by location-aware robots despite the presence of byzantine faults (2017). https://arxiv.org/pdf/1707.06776.pdf
  7. 7.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 41(1), 1516–1528 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Martin, R.: Synchronous rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 447–459. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24100-0_42 CrossRefGoogle Scholar
  10. 10.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14162-1_42 CrossRefGoogle Scholar
  11. 11.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48971-0_30 CrossRefGoogle Scholar
  12. 12.
    Czyzowicz, J., Kosowski, A., Pelc, A.: Deterministic rendezvous of asynchronous bounded-memory agents in polygonal terrains. Theory Comput. Syst. 52(2), 179–199 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 405–414 (2016)Google Scholar
  14. 14.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006).  https://doi.org/10.1007/11864219_4 CrossRefGoogle Scholar
  16. 16.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1–13. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-45249-9_1 CrossRefGoogle Scholar
  19. 19.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1), 147–168 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Huus, E., Kranakis, E.: Rendezvous of many agents with different speeds in a cycle. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 195–209. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19662-6_14 CrossRefGoogle Scholar
  21. 21.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kranakis, E., Krizanc, D., MacQuarrie, F., Shende, S.: Randomized rendezvous algorithms for agents on a ring with different speeds. In: Proceedings of the 2015 International Conference on Distributed Computing and Networking, ICDCN 2015, Goa, India, 4–7 January 2015, pp. 9:1–9:10 (2015)Google Scholar
  24. 24.
    Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring: An Introduction. Synthesis Lectures on Distributed Computing Theory Series. Morgan & Claypool Publishers, San Rafael (2010)Google Scholar
  25. 25.
    Kranakis, E., Krizanc, D., Markou, E., Pagourtzis, A., Ramírez, F.: Different speeds suffice for rendezvous of two agents on arbitrary graphs. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 79–90. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51963-0_7 CrossRefGoogle Scholar
  26. 26.
    Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)CrossRefMATHGoogle Scholar
  27. 27.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)MATHGoogle Scholar
  28. 28.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefMATHGoogle Scholar
  29. 29.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006).  https://doi.org/10.1007/11945529_24 CrossRefGoogle Scholar
  30. 30.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61440-0_163 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Huda Chuangpishit
    • 1
    • 2
  • Jurek Czyzowicz
    • 1
  • Evangelos Kranakis
    • 2
  • Danny Krizanc
    • 3
  1. 1.Départemant d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations