Advertisement

Improved Leader Election for Self-organizing Programmable Matter

  • Joshua J. Daymude
  • Robert Gmyr
  • Andréa W. Richa
  • Christian Scheideler
  • Thim Strothmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10718)

Abstract

We consider programmable matter that consists of computationally limited devices (called particles) that are able to self-organize in order to achieve some collective goal without the need for central control or external intervention. We use the geometric amoebot model to describe such self-organizing particle systems, which defines how particles can actively move and communicate with one another. In this paper, we present an efficient local-control algorithm which solves the leader election problem in \(\mathcal {O}(n)\) asynchronous rounds with high probability, where n is the number of particles in the system. Our algorithm relies only on local information — particles do not have unique identifiers, any knowledge of n, or any sort of global coordinate system — and requires only constant memory per particle.

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Appl. Math. 71, 79–94 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm for compression in self-organizing particle systems. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 279–288 (2016)Google Scholar
  5. 5.
    Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11295-4_2 Google Scholar
  6. 6.
    Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 16–30. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-01928-4_2 CrossRefGoogle Scholar
  7. 7.
    Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith, S.: Programmable assembly with universally foldable strings (moteins). IEEE Trans. Rob. 27(4), 718–729 (2011)CrossRefGoogle Scholar
  8. 8.
    Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, IRCA 1994, vol. 1, pp. 449–455 (1994)Google Scholar
  9. 9.
    Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved leader election for self-organizing programmable matter. CoRR, abs/1701.03616 (2017)Google Scholar
  10. 10.
    Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Brief announcement: amoebot - a new model for programmable matter. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2014, Prague, Czech Republic, 23–25 June 2014, pp. 220–222 (2014)Google Scholar
  11. 11.
    Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C., Strothmann, T.: On the runtime of universal coating for programmable matter. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 148–164. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-43994-5_10 CrossRefGoogle Scholar
  12. 12.
    Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An algorithmic framework for shape formation problems in self-organizing particle systems. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM 2015, Boston, MA, USA, 21–22 September 2015, pp. 21:1–21:2 (2015)Google Scholar
  13. 13.
    Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal shape formation for programmable matter. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, 11–13 July 2016, pp. 289–299 (2016)Google Scholar
  14. 14.
    Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C.: Leader election and shape formation with self-organizing programmable matter. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21999-8_8 CrossRefGoogle Scholar
  15. 15.
    Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)CrossRefGoogle Scholar
  16. 16.
    Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell structures - CEBOT. In: Proceedings of the 1988 IEEE International Conference on Intelligent Robots and Systems, IROS 1988, pp. 145–150 (1988)Google Scholar
  17. 17.
    Kernbach, S. (ed.): Handbook of Collective Robotics - Fundamentals and Challanges. Pan Stanford Publishing, Singapore (2012)Google Scholar
  18. 18.
    McLurkin, J.: Analysis and implementation of distributed algorithms for multi-robot systems. Ph.D. thesis, Massachusetts Institute of Technology (2008)Google Scholar
  19. 19.
    Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000, pp. 459–468 (2000)Google Scholar
  21. 21.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  22. 22.
    Woods, D.: Intrinsic universality and the computational power of self-assembly. In: Proceedings of MCU 2013, pp. 16–22 (2013)Google Scholar
  23. 23.
    Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 353–354 (2013)Google Scholar
  24. 24.
    Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Joshua J. Daymude
    • 1
  • Robert Gmyr
    • 2
  • Andréa W. Richa
    • 1
  • Christian Scheideler
    • 2
  • Thim Strothmann
    • 2
  1. 1.Computer Science, CIDSEArizona State UniversityTempeUSA
  2. 2.Department of Computer SciencePaderborn UniversityPaderbornGermany

Personalised recommendations