Advertisement

Postural Rehabilitation Within the VRRS (Virtual Reality Rehabilitation System) Environment

  • Marco Pirini
  • Maria Cristina Bisi
  • Andrea Turolla
  • Michela Agostini
  • Denis Vidale
  • Alessio Fiorentin
  • Federico Piron
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 19)

Abstract

Postural control has been defined as the ability to maintain, achieve or restore a state of balance during any posture or activity (van Diest et al. in J Neuroeng Rehabil 10:101, [1]; Pollock et al. in Clin Rehabil 14:402–406, [2]). Appropriate postural control is an absolute pre-requisite for activities of daily living and requires several different motor skills to be effective. To maintain a stable upright stance, with adaptive strategies for orientation and balance, information processed through the somatosensory (70%), visual (10%) and vestibular (20%) systems needs to be integrated (Horak in Age Ageing 35(Suppl 2):ii7–ii11, [3]; Laughton et al. in Gait Posture 18:101–108, [4]), and a complex interplay between sensory and motor systems (Bekkers et al. in Front Hum Neurosci 8:939, [5]) is required in order to control the multisegmental body system and interlimb coupling (Jancová in Acta Med Hradec Král Univ Carol Fac Med Hradec Král 51:129–137, [6]).

References

  1. 1.
    van Diest M, Lamoth CJC, Stegenga J, Verkerke GJ, Postema K. Exergaming for balance training of elderly: state of the art and future developments. J Neuroeng Rehabil. 2013;10:101.  https://doi.org/10.1186/1743-0003-10-101.CrossRefGoogle Scholar
  2. 2.
    Pollock AS, Durward BR, Rowe PJ, Paul JP. What is balance? Clin Rehabil. 2000;14:402–6.CrossRefGoogle Scholar
  3. 3.
    Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35(Suppl 2):ii7–11.  https://doi.org/10.1093/ageing/afl077.
  4. 4.
    Laughton CA, Slavin M, Katdare K, Nolan L, Bean JF, Kerrigan DC, Phillips E, Lipsitz LA, Collins JJ. Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture. 2003;18:101–8.CrossRefGoogle Scholar
  5. 5.
    Bekkers EMJ, Dockx K, Heremans E, Vercruysse S, Verschueren SMP, Mirelman A, Nieuwboer A. The contribution of proprioceptive information to postural control in elderly and patients with Parkinson’s disease with a history of falls. Front Hum Neurosci. 2014;8:939.  https://doi.org/10.3389/fnhum.2014.00939.CrossRefGoogle Scholar
  6. 6.
    Jancová J. Measuring the balance control system—review. Acta Med Hradec Král Univ Carol Fac Med Hradec Král. 2008;51:129–37.Google Scholar
  7. 7.
    Li Y, Levine WS, Loeb GE. A two-joint human posture control model with realistic neural delays. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2012;20:738–48.  https://doi.org/10.1109/TNSRE.2012.2199333.CrossRefGoogle Scholar
  8. 8.
    Paillard T, Noé F. Techniques and methods for testing the postural function in healthy and pathological subjects. Biomed Res Int. 2015;2015:891390.  https://doi.org/10.1155/2015/891390.Google Scholar
  9. 9.
    Winter DA. Biomechanics and motor control of human movement. Wiley; 2009.Google Scholar
  10. 10.
    Winter D. Human balance and posture control during standing and walking. Gait Posture. 1995;3:193–214.  https://doi.org/10.1016/0966-6362(96)82849-9.CrossRefGoogle Scholar
  11. 11.
    Horlings CGC, Küng UM, Honegger F, Van Engelen BGM, Van Alfen N, Bloem BR, Allum JHJ. Vestibular and proprioceptive influences on trunk movements during quiet standing. Neuroscience. 2009;161:904–14.  https://doi.org/10.1016/j.neuroscience.2009.04.005.CrossRefGoogle Scholar
  12. 12.
    Creath R, Kiemel T, Horak F, Peterka R, Jeka J. A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett. 2005;377:75–80.  https://doi.org/10.1016/j.neulet.2004.11.071.CrossRefGoogle Scholar
  13. 13.
    Pinter IJ, van Swigchem R, van Soest AJK, Rozendaal LA. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance. J Neurophysiol. 2008;100:3197–208.  https://doi.org/10.1152/jn.01312.2007.CrossRefGoogle Scholar
  14. 14.
    Boonstra TA, Schouten AC, van der Kooij H. Identification of the contribution of the ankle and hip joints to multi-segmental balance control. J Neuroeng Rehabil. 2013;10:23.  https://doi.org/10.1186/1743-0003-10-23.CrossRefGoogle Scholar
  15. 15.
    Williams MA, Soiza RL, Jenkinson AM, Stewart A. EXercising with Computers in Later Life (EXCELL)—pilot and feasibility study of the acceptability of the Nintendo® WiiFit in community-dwelling fallers. BMC Res Notes. 2010;3:238.  https://doi.org/10.1186/1756-0500-3-238.CrossRefGoogle Scholar
  16. 16.
    Robinson J, Dixon J, Macsween A, van Schaik P, Martin D. The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: a randomized controlled trial. BMC Sports Sci Med Rehabil. 2015;7:8.  https://doi.org/10.1186/s13102-015-0001-1.CrossRefGoogle Scholar
  17. 17.
    Harris DM, Rantalainen T, Muthalib M, Johnson L, Teo W-P. Exergaming as a viable therapeutic tool to improve static and dynamic balance among older adults and people with iIdiopathic Parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2015;7.  https://doi.org/10.3389/fnagi.2015.00167.
  18. 18.
    Miller KJ, Adair BS, Pearce AJ, Said CM, Ozanne E, Morris MM. Effectiveness and feasibility of virtual reality and gaming system use at home by older adults for enabling physical activity to improve health-related domains: a systematic review. Age Ageing. 2014;43:188–95.  https://doi.org/10.1093/ageing/aft194.CrossRefGoogle Scholar
  19. 19.
    Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil Assoc Acad Physiatr. 2009;88:693–701.  https://doi.org/10.1097/PHM.0b013e3181b33350.CrossRefGoogle Scholar
  20. 20.
    Hung J-W, Chou C-X, Hsieh Y-W, Wu W-C, Yu M-Y, Chen P-C, Chang H-F, Ding S-E. Randomized comparison trial of balance training by using exergaming and conventional weight-shift therapy in patients with chronic stroke. Arch Phys Med Rehabil. 2014;95:1629–37.  https://doi.org/10.1016/j.apmr.2014.04.029.CrossRefGoogle Scholar
  21. 21.
    Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther. 2008;88:1196–207.  https://doi.org/10.2522/ptj.20080062.CrossRefGoogle Scholar
  22. 22.
    Esculier J-F, Vaudrin J, Bériault P, Gagnon K, Tremblay LE. Home-based balance training programme using Wii Fit with balance board for Parkinsons’s disease: a pilot study. J Rehabil Med. 2012;44:144–50.  https://doi.org/10.2340/16501977-0922.CrossRefGoogle Scholar
  23. 23.
    Betker AL, Desai A, Nett C, Kapadia N, Szturm T. Game-based exercises for dynamic short-sitting balance rehabilitation of people with chronic spinal cord and traumatic brain injuries. Phys Ther. 2007;87:1389–98.  https://doi.org/10.2522/ptj.20060229.CrossRefGoogle Scholar
  24. 24.
    Valle MS, Casabona A, Cavallaro C, Castorina G, Cioni M. Learning upright standing on a multiaxial balance board. PLoS ONE. 2015;10:e0142423.  https://doi.org/10.1371/journal.pone.0142423.CrossRefGoogle Scholar
  25. 25.
    Fitzgerald D, Trakarnratanakul N, Smyth B, Caulfield B. Effects of a wobble board-based therapeutic exergaming system for balance training on dynamic postural stability and intrinsic motivation levels. J Orthop Sports Phys Ther. 2010;40:11–9.  https://doi.org/10.2519/jospt.2010.3121.CrossRefGoogle Scholar
  26. 26.
    Piron L, Turolla A, Agostini M, Zucconi CS, Ventura L, Tonin P, Dam M. Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair. 2010;24(6):501–8.Google Scholar
  27. 27.
    Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, Tonin P. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehab Med. 2009;41(12):1016–20.CrossRefGoogle Scholar
  28. 28.
    Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, Kiper P, Cagnin A, Piron L. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil. 2013;1(10):85.CrossRefGoogle Scholar
  29. 29.
    Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int. 2014;2014:752128.CrossRefGoogle Scholar
  30. 30.
    Luque-Moreno C, Oliva-Pascual-Vaca A, Kiper P, Rodríguez-Blanco C, Agostini M, Turolla A. Virtual reality to assess and treat lower extremity disorders in post-stroke patients. Methods Inf Med. 2016;55(1):89–92.CrossRefGoogle Scholar
  31. 31.
    Jelcic N, Cagnin A, Meneghello F, Turolla A, Ermani M, Dam M. Effects of lexical-semantic treatment on memory in early Alzheimer disease: an observer-blinded randomized controlled trial. Neurorehabil Neural Repair. 2012;26(8):949–56.CrossRefGoogle Scholar
  32. 32.
    Agostini M, Garzon M, Benavides-Varela S, De Pellegrin S, Bencini G, Rossi G, Rosadoni S, Mancuso M, Turolla A, Meneghello F, Tonin P. Telerehabilitation in poststroke anomia. Biomed Res Int. 2014;2014:706909.CrossRefGoogle Scholar
  33. 33.
    Bobbert MF, Schamhardt HC. Accuracy of determining the point of force application with piezoelectric force plates. J Biomech. 1990;23(7):705–10.CrossRefGoogle Scholar
  34. 34.
    Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture. 2010;31(3):307–10.CrossRefGoogle Scholar
  35. 35.
    Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng. 1996;43(9):956–66.CrossRefGoogle Scholar
  36. 36.
    Genthon N, Gissot AS, Froger J, Rougier P, Pérennou D. Posturography in patients with stroke estimating the percentage of body weight on each foot from a single force platform. Stroke. 2008;39(2):489.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marco Pirini
    • 1
  • Maria Cristina Bisi
    • 2
  • Andrea Turolla
    • 3
  • Michela Agostini
    • 3
  • Denis Vidale
    • 1
  • Alessio Fiorentin
    • 1
  • Federico Piron
    • 1
  1. 1.Khymeia GroupPaduaItaly
  2. 2.University of BolognaBolognaItaly
  3. 3.Kinematics and Robotics LaboratoryIRCCS Fondazione San CamilloVeniceItaly

Personalised recommendations