Advertisement

Gait Training by FES

  • Thomas SchauerEmail author
  • Thomas Seel
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 19)

Abstract

Functional electrical stimulation has been applied for more than half a century to restore and support gait in patients after stroke or after spinal cord injury. Most prevalent are assistive systems for the correction of drop foot in stroke patients using either surface or implanted stimulation technology. For therapeutical use in clinical environments, multi-channel FES systems are often employed in combination with robotic devices or partial body weight support during walking on a treadmill. The restoration of gait in spinal cord injured people is also an ongoing research topic. New implantable stimulation systems and hybrid approaches that combine powered exoskeletons and FES are under investigation. Inertial sensor technology, electromyographic sensing, and advanced feedback control are predicted to be key technologies of future FES systems that allow a more patient and situation-specific gait support.

References

  1. 1.
    Truelsen T, Piechowski-Jozwiak B, Bonita R, Mathers C, Bogousslavsky J, Boysen G. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol. 2006;13(6):581–98.CrossRefGoogle Scholar
  2. 2.
    Mackay J, Mensah GA, Mendis S, Greenlund K (2004) The atlas of heart disease and stroke. World Health Organization.Google Scholar
  3. 3.
    Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke study. Arch Phys Med Rehabil. 1995;76(1):27–32.CrossRefGoogle Scholar
  4. 4.
    Wade DT, Wood VA, Heller A, Maggs J, Hewer RL. Walking after stroke. Measurement and recovery over the first 3 months. Scand J Rehabil Med. 1987;19(1):25–30.Google Scholar
  5. 5.
    Robinson CA, Shumway-Cook A, Matsuda PN, Ciol MA. Understanding physical factors associated with participation in community ambulation following stroke. Disabil Rehabil. 2011;33(12):1033–42.CrossRefGoogle Scholar
  6. 6.
    Hyndman D, Ashburn A, Stack E. Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil. 2002;83(2):165–70.CrossRefGoogle Scholar
  7. 7.
    Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309–31.Google Scholar
  8. 8.
    Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, Ferrigno G, Friston K, Pedrocchi A, Ward NS. Re-thinking the role of motor cortex: context-sensitive motor outputs? NeuroImage. 2014;91:366–74.CrossRefGoogle Scholar
  9. 9.
    Kafri M, Laufer Y. Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke. Ann Biomed Eng. 2015;43(2):451–66.  https://doi.org/10.1007/s10439-014-1148-8.CrossRefGoogle Scholar
  10. 10.
    Preece SJ, Kenney LP, Major MJ, Dias T, Lay E, Fernandes BT. Automatic identification of gait events using an instrumented sock. J Neuroengineering Rehabil. 2011;8(1):1.CrossRefGoogle Scholar
  11. 11.
    Chia Bejarano N, Ambrosini E, Pedrocchi A, Ferrigno G, Monticone M, Ferrante S. A novel adaptive, real-time algorithm to detect gait events from wearable sensors. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):413–22.  https://doi.org/10.1109/TNSRE.2014.2337914.CrossRefGoogle Scholar
  12. 12.
    Rueterbories J, Spaich EG, Andersen OK. Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations. Med Eng Phys. 2014;36(4):502–8.CrossRefGoogle Scholar
  13. 13.
    Seel T, Escobar VC, Raisch J, Schauer T. Online gait phase detection with automatic adaption to gait velocity changes using accelerometers and gyroscopes. Biomed Eng/Biomed Techik. 2014;59(s1):S795–8.  https://doi.org/10.1515/bmt-2014-5011.Google Scholar
  14. 14.
    Seel T, Werner C, Raisch J, Schauer T. Iterative learning control of a drop foot neuroprosthesis—generating physiological foot motion in paretic gait by automatic feedback control. Control Eng Pract. 2016;48:87–97.CrossRefGoogle Scholar
  15. 15.
    Sinkjaer T, Haugland M, Inmann A, Hansen M, Nielsen KD. Biopotentials as command and feedback signals in functional electrical stimulation systems. Med Eng Phys. 2003;25(1):29–40.CrossRefGoogle Scholar
  16. 16.
    Taborri J, Palermo E, Rossi S, Cappa P. Gait partitioning methods: a systematic review. Sensors 16(1):66.  http://doi.org/10.3390/s16010066.
  17. 17.
    Nahrstaedt H, Schauer T, Shalaby R, Hesse S, Raisch J. Automatic control of a drop foot stimulator based on angle measurement using bioimpedance. Artif Organs. 2008;32(8):649–54.CrossRefGoogle Scholar
  18. 18.
    Seel T, Raisch J, Schauer T. IMU-based joint angle measurement for gait analysis. Sensors. 2014;14(4):6891–909.  https://doi.org/10.3390/s140406891.CrossRefGoogle Scholar
  19. 19.
    Graurock D, Schauer T, Seel T. Automatic pairing of inertial sensors to lower limb segments—a plugand-play approach. Current Direct Biomed Eng. 2016;2:715–8.  https://doi.org/10.1515/cdbme-2016-01552364-5504.
  20. 20.
    Merletti R, Knaflitz M, De Luca CJ. Electrically evoked myoelectric signals. Crit Rev Biomed Eng. 1992;19(4):293–340.Google Scholar
  21. 21.
    Klauer C, Raisch J, Schauer T. Linearisation of electrically stimulated muscles by feedback control of the muscular recruitment measured by evoked EMG. In: 2012 17th international conference on IEEE, Methods and Models in Automation and Robotics (MMAR); 2012. p. 108–13.Google Scholar
  22. 22.
    Klauer C, Ferrante S, Ambrosini E, Shiri U, Dahne F, Schmehl I, Pedrocchi A, Schauer T. A patient-controlled functional electrical stimulation system for arm weight relief. Med Eng Phys. 2016;38(11):1232–43.CrossRefGoogle Scholar
  23. 23.
    De Luca CF, Knaflitz M. Surface electromyography, what’s new?. Turin, Italy: CLUT Publishers; 1992.Google Scholar
  24. 24.
    Ambrosini E, Ferrante S, Schauer T, Klauer C, Gaffuri M, Ferrigno G, Pedrocchi A. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. J Electromyogr Kinesiol. 2014;24(2):307–17.  https://doi.org/10.1016/j.jelekin.2014.01.006.CrossRefGoogle Scholar
  25. 25.
    Shalaby R, Schauer T, Liedecke W, Raisch J. Amplifier design for EMG recording from stimulation electrodes during functional electrical stimulation leg cycling ergometry. Biomed Technik Biomed Eng. 2011;56(1):23–33.CrossRefGoogle Scholar
  26. 26.
    Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S, Pratt EJ, Reeves ML, van der Meulen JM, Barker AT. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med Eng Phys. 2013;35(1):74–81.  https://doi.org/10.1016/j.medengphy.2012.03.012.CrossRefGoogle Scholar
  27. 27.
    Malesevic J, Malesevic N, Bijelic G, Keller T, Konstantinovic L. Multi-pad stimulation device for treating foot drop: Case study. In: Annual conference of the Functional Electrical Stimulation Society (IFESS), IEEE, IEEE; 2014. p. 1–4.Google Scholar
  28. 28.
    Prenton S, Kenney LP, Stapleton C, Cooper G, Reeves ML, Heller BW, Sobuh M, Barker AT, Healey J, Good TR, et al. Feasibility study of a take-home array-based functional electrical stimulation system with automated setup for current functional electrical stimulation users with foot-drop. Arch Phys Med Rehabil. 2014;95(10):1870–7.CrossRefGoogle Scholar
  29. 29.
    Valtin M, Seel T, Raisch J, Schauer T. Iterative learning control of drop foot stimulation with array electrodes for selective muscle activation. In: Proceedings of the 19th IFAC World Congress; 2014. p. 6587–92.Google Scholar
  30. 30.
    Cooper G, Barker AT, Heller BW, Good T, Kenney LP, Howard D. The use of hydrogel as an electrode-skin interface for electrode array FES applications. Med Eng Phys. 2011;33(8):967–72.CrossRefGoogle Scholar
  31. 31.
    Sayenko DG, Nguyen R, Popovic MR, Masani K. Reducing muscle fatigue during transcutaneous neuromuscular electrical stimulation by spatially and sequentially distributing electrical stimulation sources. Eur J Appl Physiol. 2014;114(4):793–804.CrossRefGoogle Scholar
  32. 32.
    Veltink PH, Slycke P, Hemssems J, Buschman R, Bultstra G, Hermens H. Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator. Med Eng Phys. 2003;25(1):21–8.CrossRefGoogle Scholar
  33. 33.
    Seel T, Werner C, Schauer T. The adaptive drop foot stimulator—multivariable learning control of foot pitch and roll motion in paretic gait. Med Eng Phys. 2016;38(11):1205–13.CrossRefGoogle Scholar
  34. 34.
    Liberson W, Holmquest H, Scott M. Functional electrotherapy: stimulation of the common peroneal nerve synchronised with the swing phase of gait of hemiplegic subjects. Arch Phys Med Rehabil. 1961;42:202–5.Google Scholar
  35. 35.
    Burridge J, Taylor P, Hagan S, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11(3):201–10.CrossRefGoogle Scholar
  36. 36.
    Lyons GM, Sinkjaer T, Burridge JH, Wilcox DJ. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng. 2002;10(4):260–79.CrossRefGoogle Scholar
  37. 37.
    Melo PL, Silva MT, Martins JM, Newman DJ. Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin Biomech. 2015;30(2):101–13.  https://doi.org/10.1016/j.clinbiomech.2014.11.007.CrossRefGoogle Scholar
  38. 38.
    Hausdorff JM, Ring H. Effects of a new radio frequency-controlled neuroprosthesis on gait symmetry and rhythmicity in patients with chronic hemiparesis. Am J Phys Med Rehabil. 2008;87(1):4–13.  https://doi.org/10.1097/PHM.0b013e31815e6680.CrossRefGoogle Scholar
  39. 39.
    Kottink AIR, Oostendorp LJM, Buurke JH, Nene AV, Hermens HJ. IJzerman MJ. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif Organs. 2004;28(6):577–86.  https://doi.org/10.1111/j.1525-1594.2004.07310.x.CrossRefGoogle Scholar
  40. 40.
    Kottink AIR, Hermens HJ, Nene AV, Tenniglo MJ, Groothuis-Oudshoorn CG. IJzerman MJ. Therapeutic effect of an implantable peroneal nerve stimulator in subjects with chronic stroke and footdrop: a randomized controlled trial. Phys Ther. 2008;88(4):437–48.  https://doi.org/10.2522/ptj.20070035.CrossRefGoogle Scholar
  41. 41.
    Martin KD, Polanski W, Schackert G, Sobottka SB. New therapeutic option for drop foot with the ActiGait peroneal nerve stimulator—a technical note. World Neurosurg. 2015;84(6):2037–42.  https://doi.org/10.1016/j.wneu.2015.06.074.CrossRefGoogle Scholar
  42. 42.
    Ring H, Treger I, Gruendlinger L, Hausdorff JM. Neuroprosthesis for foot-drop compared with an ankle-foot orthosis: effects on postural control during walking. J Stroke Cerebrovasc Dis. 2009;18(1):41–7.CrossRefGoogle Scholar
  43. 43.
    Schiemanck S, Berenpas F, van Swigchem R, van den Munckhof P, de Vries J, Beelen A, Nollet F, Geurts AC. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. Restorative Neurol Neurosci. 2015;33(6):795–807.  https://doi.org/10.3233/rnn-150501.CrossRefGoogle Scholar
  44. 44.
    Sheffler LR, Hennessey MT, Naples GG, Chae J. Peroneal nerve stimulation versus an ankle foot orthosis for correction of footdrop in stroke: impact on functional ambulation. Neurorehabilitation Neural Repair. 2006;20(3):355–60.  https://doi.org/10.1177/1545968306287925.CrossRefGoogle Scholar
  45. 45.
    Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J, Kuether G. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2010;24(2):152–67.  https://doi.org/10.1177/1545968309347681.CrossRefGoogle Scholar
  46. 46.
    van Swigchem R, Weerdesteyn V, van Duijnhoven HJ, den Boer J, Beems T, Geurts AC. Near-normal gait pattern with peroneal electrical stimulation as a neuroprosthesis in the chronic phase of stroke: a case report. Arch Phys Med Rehabil. 2011;92(2):320–4.CrossRefGoogle Scholar
  47. 47.
    Taylor P, Humphreys L, Swain I. The long-term cost-effectiveness of the use of functional electrical stimulation for the correction of dropped foot due to upper motor neuron lesion. J Rehabil Med. 2013;45(2):154–60.  https://doi.org/10.2340/16501977-1090.CrossRefGoogle Scholar
  48. 48.
    Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C, Swain ID. Clinical use of the odstock dropped foot stimulator: Its effect on the speed and effort of walking. Arch Phys Med Rehabil. 1999;80(12):1577–83.  https://doi.org/10.1016/S0003-9993(99)90333-7.CrossRefGoogle Scholar
  49. 49.
    Wilder RP, Wind TC, Jones EV, Crider BE, Edlich RF. Functional electrical stimulation for a dropped foot. J Long Term Eff Med Implants. 2002;12(3):149–59.Google Scholar
  50. 50.
    Bulley C, Shiels J, Wilkie K, Salisbury L. User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiotherapy. 2011;97(3):226–33.  https://doi.org/10.1016/j.physio.2010.11.001.CrossRefGoogle Scholar
  51. 51.
    van Swigchem R, Vloothuis J, den Boer J, Weerdesteyn V, Geurts AC. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients’ satisfaction, walking speed and physical activity level. J Rehabil Med. 2010;42(2):117–21.CrossRefGoogle Scholar
  52. 52.
    Weber DJ, Stein RB, Chan KM, Loeb G, Richmond F, Rolf R, James K, Chong SL. BIONic WalkAide for correcting foot drop. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2005;13(2):242–6.  https://doi.org/10.1109/TNSRE.2005.847385.CrossRefGoogle Scholar
  53. 53.
    Kenney L, Bultstra G, Buschman R, Taylor P, Mann G, Hermens H, Holsheimer J, Nene A, Tenniglo M, van der Aa H, Hobby J. An implantable two channel drop foot stimulator: initial clinical results. Artif Organs. 2002;26(3):267–70.CrossRefGoogle Scholar
  54. 54.
    Burridge JH, Haugland M, Larsen B, Svaneborg N, Iversen HK, Christensen PB, Pickering RM, Sinkjaer T. Patients’ perceptions of the benefits and problems of using the ActiGait implanted drop-foot stimulator. J Rehabil Med. 2008;40(10):873–5.  https://doi.org/10.2340/16501977-0268.CrossRefGoogle Scholar
  55. 55.
    Byrne CA, O’Keeffe DT, Donnelly AE, Lyons GM. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction. J Electromyogr Kinesiol. 2007;17(5):605–16.  https://doi.org/10.1016/j.jelekin.2006.07.008.CrossRefGoogle Scholar
  56. 56.
    Chen M, Wu B, Lou X, Zhao T, Li J, Xu Z, Hu X, Zheng X. A self- adaptive foot drop corrector using functional electrical stimulation (FES) modulated by tibialis anterior electromyography (EMG) dataset. Med Eng Phys. 2013;35(2):195–204.  https://doi.org/10.1016/j.medengphy.2012.04.016.CrossRefGoogle Scholar
  57. 57.
    O’Keeffe DT, Lyons GM. A versatile drop foot stimulator for research applications. Med Eng Phys. 2002;24(3):237–42.MathSciNetCrossRefGoogle Scholar
  58. 58.
    Chen WL, Chen SC, Chen CC, Chou CH, Shih YY, Chen YL, Kuo TS. Patient-driven loop control for ambulation function restoration in a non-invasive functional electrical stimulation system. Dis Rehabil. 2010;32(1):65–71.  https://doi.org/10.3109/09638280903026564.CrossRefGoogle Scholar
  59. 59.
    Thorsen R, Ferrarin M, Veltink P. Enhancement of isometric ankle dorsiflex- ion by automyoelectrically controlled functional electrical stimulation on subjects with upper motor neuron lesions. Neuromodulation. 2002;5(4):256–63.CrossRefGoogle Scholar
  60. 60.
    Yeom H, Chang YH. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control. J Neurosci Methods. 2010;193(1):118–25.  https://doi.org/10.1016/j.jneumeth.2010.08.011.CrossRefGoogle Scholar
  61. 61.
    Kesar TM, Perumal R, Jancosko A, Reisman DS, Rudolph KS, Higginson JS, Binder-Macleod SA. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;90(1):55–66.  https://doi.org/10.2522/ptj.20090140.CrossRefGoogle Scholar
  62. 62.
    Teasell RW, Bhogal SK, Foley NC, Speechley MR. Gait retraining post stroke. Topics Stroke Rehabil. 2003;10(2):34–65.  https://doi.org/10.1310/UDXE-MJFF-53V2-EAP0.CrossRefGoogle Scholar
  63. 63.
    Robbins SM, Houghton PE, Woodbury MG, Brown JL. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: a meta-analysis. Arch Phys Med Rehabil. 2006;87(6):853–9.CrossRefGoogle Scholar
  64. 64.
    Daly JJ, Zimbelman J, Roenigk KL, McCabe JP, Rogers JM, Butler K, Burdsall R, Holcomb JP, Marsolais EB, Ruff RL. Recovery of coordinated gait: randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. Neurorehabilitation and Neural Repair. 2011;25(7):588–96.  https://doi.org/10.1177/1545968311400092.CrossRefGoogle Scholar
  65. 65.
    Salisbury L, Shiels J, Todd I, Dennis M. A feasibility study to investigate the clinical application of functional electrical stimulation (FES), for dropped foot, during the sub-acute phase of stroke—a randomized controlled trial. Physiotherapy Theor Pract. 2013;29(1):31–40.  https://doi.org/10.3109/09593985.2012.674087.CrossRefGoogle Scholar
  66. 66.
    Bogataj U, Gros N, Kljajic M, Acimovic R, Malezic M. The rehabilitation of gait in patients with hemiplegia: a comparison between conventional therapy and multichannel functional electrical stimulation therapy. Phys Ther. 1995;75(6):490–502.CrossRefGoogle Scholar
  67. 67.
    Cho MK, Kim JH, Chung Y, Hwang S. Treadmill gait training combined with functional electrical stimulation on hip abductor and ankle dorsiflexor muscles for chronic hemiparesis. Gait Posture. 2015;42(1):73–8.CrossRefGoogle Scholar
  68. 68.
    Hesse S, Malezic M, Schaffrin A, Mauritz K. Restoration of gait by combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients. Scand J Rehabil Med. 1995;27(4):199–204.Google Scholar
  69. 69.
    Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, Binder-Macleod SA. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture. 2011;33(2):309–13.  https://doi.org/10.1016/j.gaitpost.2010.11.019.CrossRefGoogle Scholar
  70. 70.
    Lindquist AR, Prado CL, Barros RM, Mattioli R, Da Costa PHL, Salvini TF. Gait training combining partial body-weight support, a treadmill, and functional electrical stimulation: effects on poststroke gait. Phys Ther. 2007;87(9):1144–54.CrossRefGoogle Scholar
  71. 71.
    Krishnamoorthy V, Hsu WL, Kesar TM, Benoit DL, Banala SK, Perumal R, Sangwan V, Binder-Macleod SA, Agrawal SK, Scholz JP. Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation, and visual feedback. J Neurol Phys Ther JNPT. 2008;32(4):192–202.  https://doi.org/10.1097/NPT.0b013e31818e8fc2.CrossRefGoogle Scholar
  72. 72.
    Tong RK, Ng MF, Li LS. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2006;87(10):1298–304.  https://doi.org/10.1016/j.apmr.2006.06.016.CrossRefGoogle Scholar
  73. 73.
    Dohring ME, Daly JJ. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):310–3.  https://doi.org/10.1109/TNSRE.2008.920081.CrossRefGoogle Scholar
  74. 74.
    McCabe JP, Dohring ME, Marsolais EB, Rogers J, Burdsall R, Roenigk K, Pundik S, Daly JJ. Feasibility of combining gait robot and multichannel functional electrical stimulation with intramuscular electrodes. J Rehabil Res Dev. 2008;45(7):997–1006.CrossRefGoogle Scholar
  75. 75.
    Ambrosini E, Ferrante S, Pedrocchi A, Ferrigno G, Molteni F. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients a randomized controlled trial. Stroke. 2011;42(4):1068–73.CrossRefGoogle Scholar
  76. 76.
    Yan T, Hui-Chan CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: A randomized placebo-controlled trial. Stroke. 2005;36(1):80–5.CrossRefGoogle Scholar
  77. 77.
    Jovicic NS, Saranovac LV, Popovic DB. Wireless distributed functional electrical stimulation system. J Neuroengineering Rehabil. 2012;9:54.Google Scholar
  78. 78.
    Mecheraoui CA, Swain I, Cobb J. A distributed three-channel wireless Functional electrical stimulation system for automated triggering of stimulation to enable coordinated task execution by patients with neurological disease. Biomed Signal Proc Control. 2013;8(2):176–83.  https://doi.org/10.1016/j.bspc.2012.08.006.CrossRefGoogle Scholar
  79. 79.
    Kralj A, Bajd T, Turk R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin Orthop Relat Res. 1988;233:34–43.Google Scholar
  80. 80.
    Graupe D, Kohn KH. Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics. Surg Neurol. 1998;50(3):202–7.CrossRefGoogle Scholar
  81. 81.
    Graupe D, Davis R, Kordylewski H, Kohn KH. Ambulation by traumatic t4–12 paraplegics using functional neuromuscular stimulation. Crit Rev Neurosurg. 1998;8(4):221–31.CrossRefGoogle Scholar
  82. 82.
    Braz GP, Russold M, Davis GM. Functional electrical stimulation control of standing and stepping after spinal cord injury: a review of technical characteristics. Neuromodulation J Int Neuromodulation Soc. 2009;12(3):180–90.  https://doi.org/10.1111/j.15251403.2009.00213.x.CrossRefGoogle Scholar
  83. 83.
    Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P. An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng. 2006;3(4):268–75.  https://doi.org/10.1088/1741-2560/3/4/003.CrossRefGoogle Scholar
  84. 84.
    Guiraud D, Coste CA, Benoussaad M, Fattal C. Implanted functional electrical stimulation: case report of a paraplegic patient with complete sci after 9 years. J. Neuroengineering Rehabil. 2014;11:15.Google Scholar
  85. 85.
    Kobetic R, Triolo RJ, Uhlir JP, Bieri C, Wibowo M, Polando G, Marsolais EB, Davis JA Jr, Ferguson KA. Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up case report. IEEE Trans Rehabil Eng. 1999;7(4):390–8.CrossRefGoogle Scholar
  86. 86.
    von Wild K, Rabischong P, Brunelli G, Benichou M, Krishnan K. Computer added locomotion by implanted electrical stimulation in paraplegic patients (SUAW). Acta Neurochir Suppl. 2002;79:99–104.Google Scholar
  87. 87.
    Hardin E, Kobetic R, Murray L, Corado-Ahmed M, Pinault G, Sakai J, Bailey SN, Ho C, Triolo RJ. Walking after incomplete spinal cord injury using an implanted FES system: a case report. J Rehabil Res Dev. 2007;44(3):333–46.CrossRefGoogle Scholar
  88. 88.
    Dutta A, Kobetic R, Triolo RJ. Ambulation after incomplete spinal cord injury with EMG-triggered functional electrical stimulation. IEEE Trans Bio-Med Eng. 2008;55(2 Pt 1):791–4.  https://doi.org/10.1109/TBME.2007.902225.CrossRefGoogle Scholar
  89. 89.
    Durfee WK, Rivard A. Design and simulation of a pneumatic, stored- energy, hybrid orthosis for gait restoration. J Biomech Eng. 2005;127(6):1014–9.CrossRefGoogle Scholar
  90. 90.
    Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, Pinault G, Tashman S, Triolo RJ. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447–62.CrossRefGoogle Scholar
  91. 91.
    del-Ama AJ, Koutsou AD, Moreno JC, de-los Reyes A, Gil-Agudo A, Pons JL. Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49(4):497–514.Google Scholar
  92. 92.
    Ha KH, Murray SA, Goldfarb M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2016;24(4):455–66.  https://doi.org/10.1109/TNSRE.2015.2421052.CrossRefGoogle Scholar
  93. 93.
    del-Ama AJ, Gil-Agudo A, Bravo-Esteban E, Perez-Nombela S, Pons JL, Moreno JC. Hybrid therapy of walking with kinesis overground robot for persons with incomplete spinal cord injury: a feasibility study. Robot Auton Syst. 2015;73:44–58.Google Scholar
  94. 94.
    Del-Ama AJ, Gil-Agudo A, Pons JL, Moreno JC. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study. Frontiers Hum Neurosci. 2014;8:298.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Control Systems GroupTechnische Universität BerlinBerlinGermany

Personalised recommendations