Advertisement

Relaxation Processes in Liquids and Glass-Forming Systems: What Can We Learn by Comparing Neutron Scattering and Dielectric Spectroscopy Results?

  • Arantxa Arbe
  • Juan Colmenero
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

In this chapter, we first introduce the main concepts related to quasielastic neutron scattering (QENS) techniques and the way they can be connected to dielectric spectroscopy (DS). This is not obvious, because they access different correlation functions. The dielectric permittivity measured by DS reflects the orientational dynamics of the molecular dipoles in a very broad temperature/frequency range, while, thanks to the transfer of energy (\(\hbar \omega \)) and momentum (\(\hbar Q\)) dependence of the measured intensities, QENS provides information about nuclear positions with space/time resolution. In particular, QENS on protonated samples follows the self-correlation function of the hydrogens. Next, we describe the general findings from both techniques relative to the \(\alpha \)-relaxation in glass-forming systems. From the comparison of the results, we define a Q-value (\(Q^\star \)) at which the timescale of the \(\alpha \)-process measured by QENS and DS become similar and compile its values from the literature for diverse systems ranging from polymers and low-molecular weight glass-forming systems to water and water solutions. The results are discussed in a phenomenological way in terms of structural and dynamic parameters. Thereafter, we show that in the case of a simple diffusive process, a simple approach based on molecular hydrodynamics and a molecular treatment of DS allows expressing \(Q^\star \) in terms of a many-body magnitude—a generalized Kirkwood parameter —and a single-molecule magnitude—the hydrodynamic radius. The application of these ideas to liquid water and water solutions is presented. Finally, we explore the possibility of extending this kind of treatment to the more complex subdiffusive case.

Notes

Acknowledgements

We are indebted to our collaborators in the Polymers and Soft Matter Group in San Sebastian and at the different neutron facilities (Jülich Center for Neutron Science, Institute Laue Langevin, Paul Scherrer Institute, etc.), who helped to shape many of the experiments we report on in this chapter. In particular, we we would like to thank Prof. Angel Alegría and Prof. Dieter Richter for helpful and lively discussions. We acknowledge financial support by the Spanish Ministry ‘Ministerio de Economia y Competitividad,’ code: MAT2015-63704-P (MINECO/FEDER, UE) and by the Basque Government IT-654-13 (GV).

References

  1. 1.
  2. 2.
    Alegría A, Goitiandía L, Tellería I, Colmenero J (1998) Recent Res Dev Macromol Res 3:49Google Scholar
  3. 3.
    Alegría A, Colmenero J, Mari PO, Campbell IA (1999) Phys Rev E 59:6888CrossRefGoogle Scholar
  4. 4.
    Alvarez F, Alegría A, Colmenero J (1991) Phys Rev B 44:7306CrossRefGoogle Scholar
  5. 5.
    Alvarez F, Arbe A, Colmenero J, Zorn R, Richter D (2002) Comput Mat Sci 25:596CrossRefGoogle Scholar
  6. 6.
    Alvarez F, Colmenero J, Zorn R, Willner L, Richter D (2003) Macromolecules 36:238CrossRefGoogle Scholar
  7. 7.
    Angell C (1997) Complex Behavior of Glassy Systems, vol 402. Springer Verlag, Heidelberg, Lecture Notes in PhysicsGoogle Scholar
  8. 8.
    Angell CA (1995) Science 267:1924Google Scholar
  9. 9.
    Arbe A, Colmenero J (2009) Phys Rev E 80:041805Google Scholar
  10. 10.
    Arbe A, Alegría A, Alvarez F, Colmenero J, Frick B (1993) Dynamics of the \(\alpha \)-relaxation in glass-forming polymeric systems. Steinkopff, Darmstadt, Study by neutron scattering and relaxation techniques, p 24Google Scholar
  11. 11.
    Arbe A, Richter D, Colmenero J, Farago B (1996) Phys Rev E 54:3853CrossRefGoogle Scholar
  12. 12.
    Arbe A, Colmenero J, Monkenbusch M, Richter D (1998) Phys Rev Lett 81:590CrossRefGoogle Scholar
  13. 13.
    Arbe A, Alegría A, Colmenero J, Hoffmann S, Willner L, Richter D (1999) Macromolecules 32:7572CrossRefGoogle Scholar
  14. 14.
    Arbe A, Colmenero J, Alvarez F, Monkenbusch M, Richter D, Farago B, Frick B (2002a) Phys Rev Lett 89:245701Google Scholar
  15. 15.
    Arbe A, Moral A, Alegría A, Colmenero J, Pyckhout-Hintzen W, Richter D, Farago B, Frick B (2002b) J Chem Phys 117:1336CrossRefGoogle Scholar
  16. 16.
    Arbe A, Colmenero J, Alvarez F, Monkenbusch M, Richter D, Farago B, Frick B (2003a) Phys Rev E 67:051802Google Scholar
  17. 17.
    Arbe A, Colmenero J, Richter D (2003b) Broadband Dielectric Spectroscopy. Springer, BerlinGoogle Scholar
  18. 18.
    Arbe A, Genix AC, Colmenero J, Richter D, Fouquet P (2008) Soft Matter 4:1792CrossRefGoogle Scholar
  19. 19.
    Arbe A, Malo de Molina P, Alvarez F, Frick B, Colmenero J (2016) Phys Rev Lett 117:185501Google Scholar
  20. 20.
    Arrese-Igor S, Alegría A, Colmenero J (2014a) Phys Rev Lett 113:078302Google Scholar
  21. 21.
    Arrese-Igor S, Alegría A, Colmenero J (2014b) ACS Macro Lett 3:1215CrossRefGoogle Scholar
  22. 22.
    Arrese-Igor S, Alegría A, Colmenero J (2015) J Chem Phys 142:214504Google Scholar
  23. 23.
    Arrese-Igor S, Alegría A, Colmenero J (2017) J Chem Phys 146:114502Google Scholar
  24. 24.
    Bagchi B (2012) Molecular Relaxations in Liquids. Oxford University PressGoogle Scholar
  25. 25.
    Bagchi B, Chandra A (1991) Adv Chem Phys 80:1Google Scholar
  26. 26.
    Bako I, Grosz T, Palinkas G, Bellissent-Funel MC (2003) J Chem Phys 118:3215CrossRefGoogle Scholar
  27. 27.
    Bartsch E, Debus O, Fujara F, Kiebel M, Sillescu H, Petry W (1991) Ber Bunsen Phys Chem 95:1146CrossRefGoogle Scholar
  28. 28.
    Bartsch E, Bertagnolli H, Chieuxp P, David A, Sillescu H (1993) Chem Phys 169:373CrossRefGoogle Scholar
  29. 29.
    Beiner M (2001) Macromol Rap Commun 22:869CrossRefGoogle Scholar
  30. 30.
    Bhowmik D, Pomposo JA, Juranyi F, García Sakai V, Zamponi M, Arbe A, Colmenero J (2014) Macromolecules 47:93005Google Scholar
  31. 31.
    Böhmer R, Gainaru C, Richert R (2014) Phys Rep 545:125CrossRefGoogle Scholar
  32. 32.
    Braun D, Boresch S, Steinhauser O (2014a) J Chem Phys 140:064107Google Scholar
  33. 33.
    Brodeck M, Alvarez F, Arbe A, Juranyi F, Unruh T, Holderer O, Colmenero J, Richter D (2009) J Chem Phys 130:094908Google Scholar
  34. 35.
    Buchanan M (1996) Nature 382:302CrossRefGoogle Scholar
  35. 35.
    Busselez R, Lefort R, Guendouz M, Frick B, Merdrignac-Conanec O, Morineau D (2009) J Chem Phys 130:214502Google Scholar
  36. 36.
    Busselez R, Arbe A, Alvarez F, Colmenero J, Frick B (2011a) J Chem Phys 134:054904Google Scholar
  37. 37.
    Busselez R, Lefort R, Ghoufi A, Beuneu B, Frick B, Affouard F, Morineau D (2011b) J Phys Condens Matter 23:505102Google Scholar
  38. 38.
    Busselez R, Arbe A, Cerveny S, Capponi S, Colmenero J, Frick B (2012) J Chem Phys 137:084902Google Scholar
  39. 39.
    Capponi S, Arbe A, Alvarez F, Colmenero J, Frick B, Embs JP (2009) J Chem Phys 131:204901Google Scholar
  40. 40.
    Capponi S, Arbe A, Cerveny S, Busselez R, Frick B, Embs JP, Colmenero J (2011) J Chem Phys 134:204906Google Scholar
  41. 41.
    Cerveny S, Alegría A, Colmenero J (2008) Phys Rev E 77:031803Google Scholar
  42. 42.
    Colmenero J, Arbe A (1998) Phys Rev B 57:13508Google Scholar
  43. 44.
    Colmenero J, Alegría A, Alberdi JM, Alvarez F, Frick B (1991) Phys Rev B 44:7321CrossRefGoogle Scholar
  44. 45.
    Colmenero J, Alegría A, Arbe A, Frick B (1992) Phys Rev Lett 69:478CrossRefPubMedGoogle Scholar
  45. 46.
    Colmenero J, Arbe A, Alegría A (1994) J Non-Cryst Solids 172–174:126CrossRefGoogle Scholar
  46. 47.
    Colmenero J, Arbe A, Coddens G, Frick B, Mijangos C, Reinecke H (1997) Phys Rev Lett 78:1928CrossRefGoogle Scholar
  47. 48.
    Colmenero J, Arbe A, Alegría A, Monkenbusch M, Richter D (1999) J Phys Condens Matter 11:A363CrossRefGoogle Scholar
  48. 48.
    Colmenero J, Alvarez F, Arbe A (2002) Phys Rev E 65:041804Google Scholar
  49. 50.
    Colmenero J, Arbe A, Alvarez F, Narros A, Richter D (2004) Pramana-J Phys 63:25CrossRefGoogle Scholar
  50. 50.
    Colmenero J, Alvarez F, Khairy Y, Arbe A (2013a) J Chem Phys 139:044906Google Scholar
  51. 52.
    Colmenero J, Brodeck M, Arbe A, Richter D (2013b) Macromolecules 46:1678CrossRefGoogle Scholar
  52. 52.
    Colmenero J, Alvarez F, Arbe A (2015) EPJ Web of Conferences 83:01001Google Scholar
  53. 54.
    Davidson DW, Cole RH (1950) J Chem Phys 18:1417CrossRefGoogle Scholar
  54. 55.
    Davidson DW, Cole RH (1951) J Chem Phys 19:1484CrossRefGoogle Scholar
  55. 56.
    Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, OxfordGoogle Scholar
  56. 56.
    Farago B, Arbe A, Colmenero J, Faust R, Buchenau U, Richter D (2002) Phys Rev E 65:051803Google Scholar
  57. 58.
    Frick B, Richter D, Ritter C (1989) Europhys Lett 9:557CrossRefGoogle Scholar
  58. 59.
    Fulcher GS (1925) J Am Ceram Soc 8:339CrossRefGoogle Scholar
  59. 59.
    Gambino T, Alegría A, Arbe A, Colmenero J, Malicki N, Dronet S, Schnell B, Lohstroh W, Nemkovski K Macromolecules submittedGoogle Scholar
  60. 61.
    Genix AC, Arbe A, Alvarez F, Colmenero J, Farago B, Wischnewski A, Richter D (2006a) Macromolecules 39:6260CrossRefGoogle Scholar
  61. 62.
    Genix AC, Arbe A, Alvarez F, Colmenero J, Schweika W, Richter D (2006b) Macromolecules 39:3947CrossRefGoogle Scholar
  62. 63.
    Genix AC, Arbe A, Colmenero J, Wuttke J, Richter D (2012) Macromolecules 45:2522CrossRefGoogle Scholar
  63. 64.
    Gerstl C, Brodeck M, Schneider GJ, Su Y, Allgaier J, Arbe A, Colmenero J, Richter D (2012a) Macromolecules 45:7293CrossRefGoogle Scholar
  64. 65.
    Gerstl C, Schneider GJ, Fuxman A, Zamponi M, Frick B, Seydel T, Koza M, Genix AC, Allgaier J, Richter D, Colmenero J, Arbe A (2012b) Macromolecules 45:4394CrossRefGoogle Scholar
  65. 65.
    Gilroy KS, Phillips WA (1981) Philos Mag B 43:5735Google Scholar
  66. 67.
    Glarum S (1960) J Chem Phys 33:1371CrossRefGoogle Scholar
  67. 68.
    Götze W, Sjögren L (1992) Rep Prog Phys 55:241CrossRefGoogle Scholar
  68. 68.
    Gurevich VL, Parshin DA, Pelous J, Schober HR (1993) Phys Rev B 48:16318Google Scholar
  69. 70.
    Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) J Chem Phys 107:1086CrossRefGoogle Scholar
  70. 71.
    Havriliak S, Negami S (1967) Polymer 8:161CrossRefGoogle Scholar
  71. 72.
    Hofmann A, Alegría A, Colmenero J, Willner L, Buscaglia E, Hadjichristidis N (1996) Macromolecules 29:129CrossRefGoogle Scholar
  72. 73.
    Iradi I, Alvarez F, Colmenero J, Arbe A (2004) Physica B Condens Matter 350:E881CrossRefGoogle Scholar
  73. 73.
    Jansson H, Kargl F, Fernandez-Alonso F, Swenson J (2009) J Chem Phys 130:205101Google Scholar
  74. 75.
    Khairy Y, Alvarez F, Arbe A, Colmenero J (2014) Macromolecules 47:447CrossRefGoogle Scholar
  75. 76.
    Kohlrausch F (1863) Pogg Ann Phys Chem 119:337CrossRefGoogle Scholar
  76. 77.
    Krygier E, Lin G, Mendes J, Mukandela G, Azar D, Jones AA, Pathak JA, Colby RH, Kumar SK, Floudas G, Krishnamoorti R, Faust R (2005) Macromolecules 38:7721CrossRefGoogle Scholar
  77. 78.
    Laurati M, Sotta P, Long DR, Fillot LA, Arbe A, Alegría A, Embs JP, Unruh T, Schneider GJ, Colmenero J (2012) Macromolecules 45:1676CrossRefGoogle Scholar
  78. 79.
    Lovesey SW (1984) Theory of neutron scattering from condensed matter. Clarendon Press, OxfordGoogle Scholar
  79. 80.
    Lunkenheimer P, Loidl A (2003) Broadband Dielectric Spectroscopy. Springer, BerlinGoogle Scholar
  80. 81.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15CrossRefGoogle Scholar
  81. 82.
    Madden P, Kievelson D (1984) Adv Chem Phys 56:467Google Scholar
  82. 83.
    McCrum N, Read B, Williams G (1967) Anelastic. Dielectric Effects in Polymeric Solids, Wiley, LondonGoogle Scholar
  83. 84.
    Metzler R, Klafter J (2000) Phys Rep 339:1CrossRefGoogle Scholar
  84. 85.
    Mezei F (1980) Neutron Spin Echo, vol 28. Springer-Verlag, Heidelberg, Lecture Notes in PhysicsCrossRefGoogle Scholar
  85. 85.
    Malo de Molina P, Alvarez F, Frick B, Wildes A, Arbe A, Colmenero J (2017) Phys Chem Chem Phys 19:27739Google Scholar
  86. 87.
    Montroll EW, Weiss GH (1965) J Math Phys 6:167CrossRefGoogle Scholar
  87. 88.
    Moreno AJ, Arbe A, Colmenero J (2011) Macromolecules 44:1695CrossRefGoogle Scholar
  88. 89.
    Nee T, Zwanzig R (1970) J Chem Phys 52:6353CrossRefGoogle Scholar
  89. 90.
    Novikov VN, Sokolov AP (2004) Nature 431:961CrossRefPubMedGoogle Scholar
  90. 91.
    Paul W, Baschnagel J (1999) Stochastic Processes. Springer Verlag, Berlin Heidelberg From Physics to FinanceGoogle Scholar
  91. 91.
    Perez-Aparicio R, Arbe A, Colmenero J, Frick B, Willner L, Richter D, Fetters LJ (2006) Macromolecules 39:1060Google Scholar
  92. 93.
    Perez-Aparicio R, Arbe A, Alvarez F, Colmenero J, Willner L (2009) Macromolecules 42:8271CrossRefGoogle Scholar
  93. 94.
    Petry W, Bartsch E, Fujara F, Kiebel M, Sillescu B Hand Farago (1991) Z Phys B Condens Matter 83:175Google Scholar
  94. 95.
    Powles J (1953) J Chem Phys 21:633CrossRefGoogle Scholar
  95. 96.
    Richter D, Arbe A, Colmenero J, Monkenbusch M, Farago B, Faust R (1998) Macromolecules 31:1133CrossRefGoogle Scholar
  96. 97.
    Richter D, Monkenbusch M, Willner L, Arbe A, Colmenero J, Farago B (2004) Europhys Lett 66:239CrossRefGoogle Scholar
  97. 98.
    Richter D, Monkenbusch M, Arbe A, Colmenero J (2005) Neutron Spin Echo in Polymer Systems, Adv. Polym. Sci., vol 174. Springer Verlag, Berlin Heidelberg, New YorkGoogle Scholar
  98. 99.
    Rouse PEJ (1953) J Chem Phys 21:1272CrossRefGoogle Scholar
  99. 99.
    Sacristán J, Alvarez F, Colmenero J (2007) Europhys Lett 80:38001Google Scholar
  100. 101.
    Saiz L, Guardia E, Padro JA (2000) J Chem Phys 113:2814CrossRefGoogle Scholar
  101. 102.
    Schneider U, Lunkenheimer P, Brand R, Loidl A (1998) J Non-Cryst Solids 235–237:173CrossRefGoogle Scholar
  102. 103.
    Sengwa RJ, Kaur K, Chaudhary R (2000) Polym Int 49:599CrossRefGoogle Scholar
  103. 104.
    Sobolev O, Novikov A, Pieper J (2007) Chem Phys 334:36CrossRefGoogle Scholar
  104. 105.
    Sposito G (1981) J Chem Phys 74:6943CrossRefGoogle Scholar
  105. 106.
    Squires GL (1996) Introduction to the theory of thermal neutron scattering. Dover Publication Inc., New YorkGoogle Scholar
  106. 107.
    Svanberg C, Bergman R (2001) J Non-Cryst Solids 283:225CrossRefGoogle Scholar
  107. 108.
    Tölle A (2001) Rep Prog Phys 64:1473CrossRefGoogle Scholar
  108. 108.
    Tyagi M (2007) Private communGoogle Scholar
  109. 109.
    Tyagi M, Alegría A, Colmenero J (2005) J Chem Phys 122:244909Google Scholar
  110. 110.
    Tyagi M, Arbe A, Alvarez F, Colmenero J, González MA (2008) J Chem Phys 129:224903Google Scholar
  111. 111.
    Vispa A, Rovira-Esteva M, Ruiz-Martín MD, Busch S, Unruh T, Pardo LC, Tamarit JL (2014) J Phys: Conf Series 549:012013Google Scholar
  112. 113.
    Vogel H (1921) Phys Z 22:645Google Scholar
  113. 114.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  114. 115.
    Wuttke J, Chang I, Randl OG, Fujara F, Petry W (1996) Phys Rev E 54:5364CrossRefGoogle Scholar
  115. 116.
    Wuttke J, Chang I, Fujara F, Petry W (1997) Physica B Condens Matter 234–236:431CrossRefGoogle Scholar
  116. 116.
    Yu D, Hennig M, Mole RA, Li JC, Wheeler C, Strassle T, Kearley GJ (2013) Phys Chem Chem Phys 15:20555Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Física de Materiales (CFM) (CSIC–UPV/EHU) – Materials Physics Center (MPC)San SebastiánSpain
  2. 2.Departamento de Física de MaterialesUPV/EHU, and Donostia International Physics CenterSan SebastiánSpain

Personalised recommendations