Scaling of Suprastructure and Dynamics in Pure and Mixed Debye Liquids

  • Sebastian Peter Bierwirth
  • Jennifer Bolle
  • Stefan Bauer
  • Christian Sternemann
  • Catalin Gainaru
  • Metin Tolan
  • Roland BöhmerEmail author
Part of the Advances in Dielectrics book series (ADVDIELECT)


Supramolecular relaxations of the Debye or near-Debye type are featured by monohydroxy alcohols, water, and several other liquids. Mainly focusing on results from broadband dielectric spectroscopy, shear rheology, X-ray diffraction, and near-infrared absorption, scaling properties of chain-forming and ring-forming monohydroxy alcohols are examined. Deviations from ideal-mixing behavior in binary solutions involving these liquids in their supercooled state are given particular attention. The present survey is selective rather than comprehensive with a focus on exciting recent developments in this scientific area. Although most of the research summarized in this chapter is based on experiments and analyses carried out under linear-response and ambient-pressure conditions, phenomena emerging beyond these regimes are briefly touched upon as well. Finally, aiming at a faithful representation of the molecular dynamics taking place in these liquids at the microscopic level, overarching aspects arising from the complementary application of experimental techniques as well as perspectives for future developments are discussed.



The support provided by the Deutsche Forschungsgemeinschaft under Grants No. BO1301/8-1, BO1301/8-2, and BO1301/14-1 is highly appreciated. Tina Hecksher kindly made available data for 2-ethyl-1-hexylamine and -thiol. Among our former students we thank in particular Thomas Büning, Kevin Moch, Marcel Preuß, and Hendrik Wittkamp for their contributions. We acknowledge DELTA synchrotron radiation source for allocating beamtime at beamline BL9, Michael Paulus for help with the X-ray diffraction experiments, as well as Patrick Degen and Heinz Rehage for enabling the density measurements.


  1. 1.
    Dyre JC (2006) Colloquium: the glass transition and elastic models of glass-forming liquids. Rev Mod Phys 78:953CrossRefGoogle Scholar
  2. 2.
    Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201CrossRefGoogle Scholar
  4. 4.
    Hecksher T, Olsen NB, Niss K, Dyre JC (2010) Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J Chem Phys 133:174514CrossRefPubMedGoogle Scholar
  5. 5.
    Debije P (1913) Zur Theorie der anomalen Dispersion im Gebiete der langwelligen elektrischen Strahlung. Verh d Dt Phys Ges 15:777Google Scholar
  6. 6.
    Huth H, Wang L-M, Schick C, Richert R (2007) Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol. J Chem Phys 126:104503CrossRefPubMedGoogle Scholar
  7. 7.
    Böhmer R, Gainaru C, Richert R (2014) Structure and dynamics of monohydroxy alcohols milestones towards their microscopic understanding, 100 years after Debye. Phys Rep 545:125CrossRefGoogle Scholar
  8. 8.
    Bauer S, Stern J, Böhm F, Gainaru C, Havenith M, Loerting T, Böhmer R (2015) Vibrational study of anharmonicity, supramolecular structure, and hydrogen bonding in two octanol isomers. Vib Spectrosc 79:59CrossRefGoogle Scholar
  9. 9.
    Böttcher CJF (1973) Theory of electric polarization. volume 1, Elsevier, New York, §40Google Scholar
  10. 10.
    Bierwirth SP, Büning T, Gainaru C, Sternemann C, Tolan M, Böhmer R (2014) Supramolecular x-ray signature of susceptibility amplification in hydrogen-bonded liquids. Phys Rev E 90:052807CrossRefGoogle Scholar
  11. 11.
    Gao Y, Tu W, Chen Z, Tian Y, Liu R, Wang L-M (2013) Dielectric relaxation of long-chain glass-forming monohydroxy alcohols. J Chem Phys 139:164504CrossRefPubMedGoogle Scholar
  12. 12.
    Wang L-M, Richert R (2005) Ideal mixing behavior of the Debye process in supercooled monohydroxy alcohols. J Phys Chem B 109:8767CrossRefPubMedGoogle Scholar
  13. 13.
    Pawlus S, Klotz S, Paluch M (2013) Effect of compression on the relationship between viscosity and dielectric relaxation time in hydrogen-bonded primary alcohols. Phys Rev Lett 110:173004CrossRefPubMedGoogle Scholar
  14. 14.
    Gabriel J, Pabst F, Helbling A, Böhmer T, Blochowicz T (2018) Dynamic light scattering and dielectric spectroscopy: two perspectives on molecular reorientation in supercooled liquids. In: Loidl A, Kremer F (eds) The scaling of relaxation processes. Springer, this bookGoogle Scholar
  15. 15.
    Various aspects of binary mixtures of glass formers are reviewed by Körber T, Rössler EA (2018) Dynamic heterogeneity in binary glass formers. In: Loidl A, Kremer F (eds) The scaling of relaxation processes. Springer, this bookGoogle Scholar
  16. 16.
    Steward GW, Morrow RM (1927) X-ray diffraction in liquids: primary normal alcohols. Phys Rev 30:232CrossRefGoogle Scholar
  17. 17.
    Davidson, DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and normal-propanol. J Chem Phys 19:1484 varied the number of molecular OH groupsGoogle Scholar
  18. 18.
    Dannhauser W (1968) Dielectric study of intermolecular association in isomeric octyl alcohols. J Chem Phys 48:1911CrossRefGoogle Scholar
  19. 19.
    Tomšič M, Jamnik A, Fritz-Popovski G, Glatter O, Vlček L (2007) Structural properties of pure simple alcohols from ethanol, propanol, butanol, pentanol to hexanol: comparing Monte Carlo simulations with experimental SAXS data. J Phys Chem B 111:1738CrossRefPubMedGoogle Scholar
  20. 20.
    Stickel F (1995) Dissertation, Universität MainzGoogle Scholar
  21. 21.
    Kaatze U, Behrends R, Pottel R (2002) Hydrogen network fluctuations and dielectric spectrometry of liquids. J Non-Cryst Solids 305:19CrossRefGoogle Scholar
  22. 22.
    Yomogida Y, Sato Y, Yamakawa K, Nozaki R, Mishina T, Nakahara J (2010) Comparative dielectric study of pentanol isomers with terahertz time-domain spectroscopy. J Mol Struct 970:171CrossRefGoogle Scholar
  23. 23.
    Kaatze U, Behrends R, von Roden K (2010) Structural aspects in the dielectric properties of pentyl alcohols. J Chem Phys 133:094508CrossRefPubMedGoogle Scholar
  24. 24.
    Dannhauser W, Guerin R, Flueckinger AF (1970) Dielectric properties of liquid, 2-Propen-l-ol and 2-Propyn-l-ol. J Chem Phys 52:6446CrossRefGoogle Scholar
  25. 25.
    Gao Y, Bi D, Li X, Liu R, Tian Y, Wang L-M (2013) Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol. J Chem Phys 139:024503CrossRefPubMedGoogle Scholar
  26. 26.
    Gao Y, Chen Z, Tu W, Li X, Tian Y, Liu R, Wang L-M (2015) Anomaly in dielectric relaxation dispersion of glass-forming alkoxy alcohols. J Chem Phys 142:214505CrossRefPubMedGoogle Scholar
  27. 27.
    Sartor G, Hofer K, Johari GP (1996) Structural relaxation and H bonding in isomeric octanols and their LiCl solutions by calorimetry. J Phys Chem 100:6801CrossRefGoogle Scholar
  28. 28.
    Singh LP, Richert R (2012) Watching hydrogen-bonded structures in an alcohol convert from rings to chains. Phys Rev Lett 109:167802CrossRefPubMedGoogle Scholar
  29. 29.
    Hecksher T, Jakobsen B (2014) Communication: supramolecular structures in monohydroxy alcohols: insights from shear-mechanical studies of a systematic series of octanol structural isomers. J Chem Phys 141:101104CrossRefPubMedGoogle Scholar
  30. 30.
    Wikarek M, Pawlus S, Tripathy SN, Szulc A, Paluch M (2016) How different molecular architectures influence the dynamics of H-bonded structures in glass-forming monohydroxy alcohols. J Phys Chem B 120:5744CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dannhauser W, Flueckinger AF (1970) Liquid structure and dielectric relaxation of some isomeric methylheptanols. Phys Chem Liq 2:37CrossRefGoogle Scholar
  32. 32.
    Johari GP, Dannhauser W (1968) Dielectric study of intermolecular association in sterically hindered octanol isomers. J Phys Chem 72:3273CrossRefGoogle Scholar
  33. 33.
    Dannhauser W, Bahe LW, Lin RY, Flueckinger AF (1965) Dielectric constant of hydrogen bonded liquids. IV. Equilibrium and relaxation studies of homologous neo alcohols. J Chem Phys 43:257CrossRefGoogle Scholar
  34. 34.
    Arrese-Igor S, Alegria A, Colmenero J (2017) On the non-exponentiality of the dielectric debye-like relaxation of monoalcohols. J Chem Phys 146:114502CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kalinovskaya OE, Vij JK, Johari GP (2001) Mechanism of the major orientation polarization in alcohols, and the effects of steric hindrance-, and dilution-induced decrease on H-bonding. J Phys Chem A 105:5061CrossRefGoogle Scholar
  36. 36.
    Johari GP, Kalinovskaya OE, Vij JK (2001) Effects of induced steric hindrance on the dielectric behavior and H bonding in the supercooled liquid and vitreous alcohol. J Chem Phys 114:4634CrossRefGoogle Scholar
  37. 37.
    Adrjanowicz K, Jakobsen B, Hecksher T, Kaminski K, Dulski M, Paluch M, Niss K (2015) Communication: slow supramolecular mode in amine and thiol derivatives of 2-ethyl-1-hexanol revealed by combined dielectric and shear-mechanical studies. J Chem Phys 143:181102CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li S-L, Xiao T, Lin C, Wang L (2012) Advanced supramolecular polymers constructed by orthogonal self-assembly. Chem Soc Rev 41:5950CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  41. 41.
    Roland CM (2011) Viscoelastic behavior of rubbery materials. Oxford University Press, OxfordCrossRefGoogle Scholar
  42. 42.
    Lyon T, Litovitz TA (1956) Ultrasonic relaxation in normal propyl alcohol. J Appl Phys 27:179CrossRefGoogle Scholar
  43. 43.
    Behrends R, Kaatze U (2001) Hydrogen bonding and chain conformational isomerization of alcohols probed by ultrasonic absorption and shear impedance spectrometry. J Phys Chem A 105:5829CrossRefGoogle Scholar
  44. 44.
    Kaatze U, Behrends R (2011) Hydrogen bond fluctuations and dispersive interactions of alcohol/alkane mixtures. An ultrasonic relaxation study. Chem Phys Lett 510:67CrossRefGoogle Scholar
  45. 45.
    Gainaru C, Figuli R, Hecksher T, Jakobsen B, Dyre JC, Wilhelm M, Böhmer R (2014) Shear-modulus investigations of monohydroxy alcohols: evidence for a short-chain-polymer rheological response. Phys Rev Lett 112:098301CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Büning T, Lueg J, Bolle J, Sternemann C, Gainaru C, Tolan M, Böhmer R (2017) Connecting structural and dynamical signatures of supramolecular Debye liquids. J Chem Phys 147:234501CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hecksher T (2016) Communication: linking the dielectric Debye process in monoalcohols to density fluctuations. J Chem Phys 144:161103CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Shamim N, McKenna GB (2014) Mechanical spectral hole burning in polymer solutions: comparison with large amplitude oscillatory shear fingerprinting. J Rheology 58:43 and references cited thereinGoogle Scholar
  49. 49.
    Cziep MA, Abbasi M, Heck M, Arens L, Wilhelm M (2016) Effect of molecular weight, polydispersity and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity 3Q0(ω) in MAOS. Macromolecules 49:3566CrossRefGoogle Scholar
  50. 50.
    Wilhelm M, Hyun K (2018) Non-linear shear mechanical responses. In: Richert R (ed) Nonlinear dielectric spectroscopy. SpringerGoogle Scholar
  51. 51.
    Bierwirth SP, Gainaru C, Böhmer R (2018) Debye liquids with tiny supramolecular signatures in their dielectric responses: insights from linear and non-linear shear studies (unpublished)Google Scholar
  52. 52.
    Seyboldt R, Merger D, Coupette F, Siebenbürger M, Ballauff M, Wilhelm M, Fuchs M (2016) Divergence of the third harmonic stress response to oscillatory strain approaching the glass transition. Soft Matter 12:8825CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Richert R (2014) Supercooled liquids and glasses by dielectric relaxation spectroscopy. Adv Chem Phys 156:101Google Scholar
  54. 54.
    Richert R (2017) Nonlinear dielectric effects in liquids: a guided tour. J Phys: Condens Matter 29:363001Google Scholar
  55. 55.
    Richert R (ed) (2018) Nonlinear Dielectric Spectroscopy. SpringerGoogle Scholar
  56. 56.
    Takahara S, Yamamuro O, Suga H (1994) Heat capacities and glass transitions of 1-propanol and 3-methylpentane under pressure. New evidence for the entropy theory. J Non-Cryst Solids 171:259Google Scholar
  57. 57.
    Murthy SSN, Nayak SK (1993) Experimental study of the nature of the glass transition process in monohydroxy alcohols. J Chem Phys 99:5362CrossRefGoogle Scholar
  58. 58.
    Murthy SSN, Sobhanadri J, Gangasharan (1994) The origin of β relaxation in organic glasses. J Chem Phys 100:4601Google Scholar
  59. 59.
    Wang L-M, Tian Y, Liu R, Richert R (2008) Calorimetric versus kinetic glass transitions in viscous monohydroxy alcohols. J Chem Phys 128:084503CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Preuß M, Gainaru C, Hecksher T, Bauer S, Dyre JC, Richert R, Böhmer R (2012) Experimental studies of Debye-like process and structural relaxation in mixtures of 2-ethyl-1-hexanol and 2-ethyl-1-hexyl bromide. J Chem Phys 137:144502CrossRefPubMedGoogle Scholar
  61. 61.
    Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A, Böhmer R (2013) Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols. J Chem Phys 138:094505CrossRefPubMedGoogle Scholar
  62. 62.
    CRC Handbook of Chemistry and Physics (1998) Lide DR (ed) Chemical Rubber, 79th edn. Cleveland, pp 9–43Google Scholar
  63. 63.
    Kirkwood JG (1939) The dielectric polarization of polar liquids. J Chem Phys 7:911CrossRefGoogle Scholar
  64. 64.
    Wang L-M, Tian Y, Liu R, Ngai KL (2011) Anomalous component dynamics of a binary mixture of associating glass-forming liquids. J Phys Chem B 115:719CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gainaru C, Böhmer R, Williams G (2010) Ion-sweeping in conducting dielectric materials. Eur Phys J B 75:209CrossRefGoogle Scholar
  66. 66.
    Ishai PB, Talary MS, Caduff A, Levy E, Feldman Y (2013) Electrode polarization in dielectric measurements: a review. Meas Sci Technol 24:102001CrossRefGoogle Scholar
  67. 67.
    Emmert S, Wolf M, Gulich R, Krohns S, Kastner S, Lunkenheimer P, Loidl A (2011) Electrode polarization effects in broadband dielectric spectroscopy. Eur Phys J B 83:157CrossRefGoogle Scholar
  68. 68.
    Wittkamp H (2012) Master Thesis, TU Dortmund UniversityGoogle Scholar
  69. 69.
    Adrjanowicz K, Kaminski K, Dulski M, Wlodarczyk P, Bartkowiak G, Popenda L, Jurga S, Kujawski J, Kruk J, Bernard MK, Paluch M (2013) Communication: synperiplanar to antiperiplanar conformation changes as underlying the mechanism of Debye process in supercooled Ibuprofen. J Chem Phys 139:111103CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Moynihan CT, Boesch LP, Laberge NL (1973) Decay function for electric-field relaxation in vitreous ionic conductors. Phys Chem Glasses 14:122Google Scholar
  71. 71.
    Fayer MD (2011) Watching ultrafast molecular motions with 2D IR chemical exchange spectroscopy. World Scientific, BangaloreCrossRefGoogle Scholar
  72. 72.
    Czarnecki MA (2011) Two-dimensional correlation analysis of hydrogen-bonded systems: basic molecules. Appl Spectrosc Rev 46:67CrossRefGoogle Scholar
  73. 73.
    Suhm MA (2009) Hydrogen bond dynamics in alcohol clusters. Adv Chem Phys 142:1Google Scholar
  74. 74.
    Bauer S, Moch K, Münzner P, Schildmann S, Gainaru C, Böhmer R (2015) Mixed Debye-type liquids studied by dielectric, shear mechanical, nuclear magnetic resonance, and near-infrared spectroscopy. J Non-Cryst Solids 407:384CrossRefGoogle Scholar
  75. 75.
    Workman J, Weyer L (2008) Practical guide to interpretive near-infrared spectroscopy. CRC Press, Boca Raton, Florida, USAGoogle Scholar
  76. 76.
    Miller CE (2002) Chemical principles of near-infrared technology. Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1, Chapter 2. Wiley, ChichesterGoogle Scholar
  77. 77.
    Adrjanowicz K, Kaminski K, Wojnarowska Z, Dulski M, Hawelek L, Paulus S, Paluch M, Sawicki W (2010) Dielectric relaxation and crystallization kinetics of ibuprofen at ambient and elevated pressure. J Phys Chem B 114:6579 and references cited thereinCrossRefPubMedGoogle Scholar
  78. 78.
    Bicca de Alencastro R, Sandorfy C (1972) A low temperature infrared study of self-association in thiols. Can J Chem 50:3594CrossRefGoogle Scholar
  79. 79.
    Gainaru C, Kastner S, Mayr F, Lunkenheimer P, Schildmann S, Weber HJ, Hiller W, Loidl A, Böhmer R (2011) Hydrogen-bond equilibria and life times in a monohydroxy alcohol. Phys Rev Lett 107:118304CrossRefPubMedGoogle Scholar
  80. 80.
    Sillrén P, Matic A, Karlsson M, Koza M, Maccarini M, Fouquet P, Götz M, Bauer T, Gulich R, Lunkenheimer P, Loidl A, Mattsson J, Gainaru C, Vynokur E, Schildmann S, Bauer S, Böhmer R (2014) Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy. J Chem Phys 140:124501CrossRefPubMedGoogle Scholar
  81. 81.
    Luck WAP, Ditter W (1968) Zur Bestimmung der Wasserstoffbrückenbindung im Oberschwingungsgebiet. J Mol Struct 1:261CrossRefGoogle Scholar
  82. 82.
    Hédoux A, Guinet Y, Paccou L, Derollez P, Danède F (2013) Vibrational and structural properties of amorphous n-butanol: A complementary Raman spectroscopy and X-ray diffraction study. J Chem Phys 138:214506CrossRefPubMedGoogle Scholar
  83. 83.
    Graener H, Ye TQ, Laubereau A (1989) Ultrafast dynamics of hydrogen bonds directly observed by time resolved infrared spectroscopy. J Chem Phys 90:3413CrossRefGoogle Scholar
  84. 84.
    Wong J, Angell CA (1972) Spectroscopic detection of the glass transition: the π → π* transition in nitrate melts. J Non-Cryst Solids 7:109CrossRefGoogle Scholar
  85. 85.
    Barkatt A, Angell CA (1978) Use of structural probe ions for relaxation studies in glasses. 2. Temperature-jump and temperature-ramp studies of cobalt(II) in nitrate glasses. J Phys Chem 82:1972CrossRefGoogle Scholar
  86. 86.
    Böhmer R, Sanchez E, Angell CA (1992) AC technique for simultaneous study of local and global linear responses near the glass transition: the case of doped Ca2+/K+/NO3. J Phys Chem 96:9089CrossRefGoogle Scholar
  87. 87.
    Böhmer R, Angell CA (1994) Global and local relaxations in glass-forming materials. In: Richert R, Blumen A (eds) Disorder effects on relaxational processes. Springer, Heidelberg. pp 11–54Google Scholar
  88. 88.
    Kremer F, Kossack W, Anton M (2018) The dynamic glass transition as reflected in its inter-molecular dynamics and intra-molecular mobility. In: Loidl A, Kremer F (eds) The scaling of relaxation processes. Springer, this bookGoogle Scholar
  89. 89.
    Sillrén P, Swenson J, Mattsson J, Bowron D, Matic A (2013) The temperature dependent structure of liquid 1-propanol as studied by neutron diffraction and EPSR simulations. J Chem Phys 138:214501CrossRefPubMedGoogle Scholar
  90. 90.
    Singh LP, Raihane A, Alba-Simionesco C, Richert R (2015) Dopant effects on 2-ethyl-1-hexanol: a dual-channel impedance spectroscopy and neutron scattering study. J Chem Phys 142:014501CrossRefPubMedGoogle Scholar
  91. 91.
    Ghoufi A, Hureau I, Lefort R, Morineau D (2011) Hydrogen-bond-induced supermolecular assemblies in a nanoconfined tertiary alcohol. J Phys Chem C 115:17761CrossRefGoogle Scholar
  92. 92.
    Perera A (2017) Charge ordering and scattering pre-peaks in ionic liquids and alcohols. Phys Chem Chem Phys 19:1062CrossRefPubMedGoogle Scholar
  93. 93.
    Mariani A, Ballirano P, Angiolari F, Caminiti R, Gontrani L (2016) Does high pressure induce structural reorganization in linear alcohols? A computational answer. Chem Phys Chem 17:3023PubMedGoogle Scholar
  94. 94.
    Hennous L, Abdel Hamid AR, Lefort R, Morineau D, Malfreyt P, Ghoufi A (2014) Crossover in structure and dynamics of a primary alcohol induced by hydrogen-bonds. J Chem Phys 141:204503CrossRefPubMedGoogle Scholar
  95. 95.
    Hall MM Jr, Veeraraghavan VG, Rubin H, Winchell PG (1977) The approximation of symmetric x-ray peaks by Pearson type VII distributions. J Appl Crystallogr 10:66CrossRefGoogle Scholar
  96. 96.
    Büning T (2016) Supramolecular structure of monohydroxy alcohols, Ph.D. Thesis. TU Dortmund UniversityGoogle Scholar
  97. 97.
    Vahvaselkä KS, Serimaa R, Torkkeli M (1995) Determination of liquid structures of the primary alcohols methanol, ethanol, 1-propanol, 1-butanol and 1-octanol by X-ray scattering. J Appl Crvst 28:189CrossRefGoogle Scholar
  98. 98.
    Bertagnolli H, Schulz G (1986) An x-ray study of specific bromine interaction in liquid ethylbromine and its interpretation by geometrical and potential models. Ber Bunsenges Phys Chem 90:816CrossRefGoogle Scholar
  99. 99.
    Zetterström P, Dahlborg U, Wannberg A (1994) Structural studies of liquid 2-bromopropane and 2-chloropropane by neutron diffraction. Mol Phys 83:971CrossRefGoogle Scholar
  100. 100.
    Stewart GK (1930) The cybotactic (molecular group) condition in liquids; the nature of the association of octyl alcohol molecules. Phys Rev 35:726CrossRefGoogle Scholar
  101. 101.
    Pierce WC, macMillan DP (1938) X-ray studies on liquids: The inner peak for alcohols and acids. J Am Chem Soc 60:779CrossRefGoogle Scholar
  102. 102.
    Denney DJ (1959) Dielectric relaxation in some two-component systems. J Chem Phys 30:1019CrossRefGoogle Scholar
  103. 103.
    Mopsik FI, Cole RH (1966) Dielectric relaxation in liquid n-octyl iodide. J Chem Phys 44:1015CrossRefGoogle Scholar
  104. 104.
    Denney DJ, Ring JW (1963) Dielectric relaxation in the 1-propanol-2-methylpentane system. J Chem Phys 39:1268CrossRefGoogle Scholar
  105. 105.
    Wang L-M, Shahriari S, Richert R (2005) Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols. J Phys Chem B 109:23255CrossRefPubMedGoogle Scholar
  106. 106.
    Power G, Nagaraj M, Vij JK, Johari GP (2011) Debye process and dielectric state of an alcohol in a nonpolar solvent. J Chem Phys 134:044525CrossRefPubMedGoogle Scholar
  107. 107.
    Abdel Hamid AR, Lefort R, Lechaux Y, Moréac A, Ghoufi A, Alba-Simionesco C, Morineau D (2013) Solvation effects on self-association and segregation processes in tert-butanol—aprotic solvent binary mixtures. J Phys Chem B 117:10221CrossRefPubMedGoogle Scholar
  108. 108.
    El Goresy T, Böhmer R (2008) Diluting the hydrogen bonds in mixtures of n-butanol with n-bromobutane: a dielectric study. J Chem Phys 128:154520CrossRefPubMedGoogle Scholar
  109. 109.
    Lederle C, Hiller W, Gainaru C, Böhmer R (2011) Diluting the hydrogen bonds in viscous solutions of n-butanol with n-bromobutane. II. A comparison of rotational and translational motions. J Chem Phys 134:064512CrossRefPubMedGoogle Scholar
  110. 110.
    Li X, Chen Z, Li Z, Gao Y, Tu W, Li X, Zhang Y, Liu YD, Wang L-M (2014) Comparative study of dynamics in glass forming mixtures of Debye-type N-ethylacetamide with water, alcohol, and amine. J Chem Phys 141:104506CrossRefPubMedGoogle Scholar
  111. 111.
    Adachi K, Kotaka T (1993) Dielectric normal-mode relaxation. Prog Polym Sci 18:585CrossRefGoogle Scholar
  112. 112.
    Williams G (2009) Chain dynamics in solid polymers and polymerizing systems as revealed by broadband dielectric spectroscopy. Macromol Symp 286:1CrossRefGoogle Scholar
  113. 113.
    Yamaguchi T (2017) Viscoelastic relaxations of high alcohols and alkanes: Effects of heterogeneous structure and translation-orientation coupling. J Chem Phys 146:094511CrossRefGoogle Scholar
  114. 114.
    Bierwirth SP, Münzner P, Knapp TA, Gainaru C, Böhmer R (2017) Communication: nonadditive dielectric susceptibility spectra of associating liquids. J Chem Phys 146:101101CrossRefPubMedGoogle Scholar
  115. 115.
    Bierwirth SP, Gainaru C, Böhmer R (2018) Coexistence of two structural relaxation processes in monohydroxy alcohol–alkyl halogen mixtures. J Chem Phys (submitted)Google Scholar
  116. 116.
    Lesikar AV (1975) On the glass transition in organic halide–alcohol mixtures. J Chem Phys 63:2297CrossRefGoogle Scholar
  117. 117.
    Lesikar AV (1977) On the glass transition in mixtures between the normal alcohols and various Lewis bases. J Chem Phys 66:4263CrossRefGoogle Scholar
  118. 118.
    Wang L-M, Richert R (2008) Glass transitions in viscous monohydroxy alcohols: calorimetry versus dielectric relaxation. Int J Thermophys 29:2055CrossRefGoogle Scholar
  119. 119.
    Weingärtner H, Nadolny H, Oleinikova A, Ludwig R (2004) Collective contributions to the dielectric relaxation of hydrogen-bonded liquids. J Chem Phys 120:11692CrossRefPubMedGoogle Scholar
  120. 120.
    Vasiltsova T, Heintz A, Nadolny H, Weingärtner H (2009) Application of a new statistical mechanical model for calculating Kirkwood factors in self associating liquid systems to alkanol + CCl4 mixtures. Phys Chem Chem Phys 11:2408CrossRefPubMedGoogle Scholar
  121. 121.
    Power G, Vij JK, Johari GP (2007) Dielectric relaxation and crystallization of nanophase separated 1-propanol-isoamylbromide mixture. J Chem Phys 127:094507CrossRefPubMedGoogle Scholar
  122. 122.
    Power G, Vij JK, Johari GP (2007) Relaxations and nano-phase-separation in ultraviscous heptanol-alkyl halide mixture. J Chem Phys 126:034512CrossRefPubMedGoogle Scholar
  123. 123.
    Murthy SSN, Tyagi M (2002) Experimental study of the high frequency relaxation process in monohydroxy alcohols. J Chem Phys 117:3837CrossRefGoogle Scholar
  124. 124.
    Murthy SSN, Tyagi M (2002) Dielectric study of the miscibility of binary liquids, one being an alcohol. J Sol Chem 31:33CrossRefGoogle Scholar
  125. 125.
    Pawlus S, Paluch M, Dzida M (2011) Molecular dynamics changes induced by solvent in 2-ethyl-1-hexanol. Phys Rev E 84:031503CrossRefGoogle Scholar
  126. 126.
    See the temperature dependent loss angle shown in Ref [105]Google Scholar
  127. 127.
    See, e.g., Schönhals A, Schlosser E (1993) Relation between main- and normal-mode relaxation A dielectric study on poly(propyleneoxide). Prog Coll Polym Sci 91:158; Mierzwa M, Floudas G, Dorgan J, Knauss D, Wegner J (2002) Local and global dynamics of polylactides: a dielectric spectroscopy study. J Non-Cryst Solids 307–310:296; Casalini R, Roland CM (2005) Temperature and density effects on the local segmental and global chain dynamics of poly(oxybutylene). Macromolecules 38:1779Google Scholar
  128. 128.
    Gainaru C, Böhmer R (2009) Oligomer-to-polymer transition of poly-(propylene glycol) revealed by dielectric normal modes. Macromolecules 42:7616; Gainaru C, Hiller W, Böhmer R (2010) A dielectric study of oligo- and poly(propylene glycol). Macromolecules 43:1907Google Scholar
  129. 129.
    Ngai KL, Schönhals A, Schlosser E (1992) An explanation of anomalous dielectric relaxation properties of polypropylene glycol. Macromolecules 25:4915; Ilan B, Loring RF (1999) Local vitrification model for melt dynamics. Macromolecules 32:949Google Scholar
  130. 130.
    Gainaru C, Hecksher T, Fan F, Xing K, Cetinkaya B, Olsen NB, Dyre JC, Sokolov AP, Böhmer R (2017) Simple-liquid dynamics emerging in the mechanical shear spectra of poly(propylene glycol). Colloid Polym Sci B 295:2433Google Scholar
  131. 131.
    Preuß M (2010) Master Thesis. TU Dortmund UniversityGoogle Scholar
  132. 132.
    Denney DJ, Cole RH (1955) Dielectric properties of methanol and methanol-1-propanol solutions. J Chem Phys 23:1767CrossRefGoogle Scholar
  133. 133.
    Bordewijk P, Gransch F, Böttcher CJF (1969) Dielectric behavior of mixtures of 1-heptanol and 4-heptanol and the fluid structure of the monoalcohols. J Phys Chem 73:3255CrossRefGoogle Scholar
  134. 134.
    Petong P, Pottel R, Kaatze U (1999) Dielectric relaxation of H-bonded liquids mixtures of ethanol and n-hexanol at different compositions and temperatures. J Phys Chem A 103:6114CrossRefGoogle Scholar
  135. 135.
    Singh LP, Alba-Simionesco C, Richert R (2013) Dynamics of glass-forming liquids. XVII. Dielectric relaxation and intermolecular association in a series of isomeric octyl alcohols. J Chem Phys 139:144503CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Gong H, Chen Z, Bi D, Sun M, Tian Y, Wang L-M (2012) Unusual dielectric strength of debye relaxation in monohydroxy alcohols upon mixing. J Phys Chem B 116:11482CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Pawlus S, Wikarek M, Gainaru C, Paluch M, Böhmer R (2013) How do high pressures change the Debye process of 4-methyl-3-heptanol? J Chem Phys 139:064501 and references cited thereinGoogle Scholar
  138. 138.
    Dielectric data for pure 2E1B are available from Refs. [61,136,137] and from the present work. The present results agree with Ref. [136] and in both cases chemicals from Sigma Aldrich were used. In Refs. [61,137] larger relaxation strengths were found for substances obtained from Alfa Aesar. The reasons for these discrepancies are not clear at present. In the following we use the data obtained in the present workGoogle Scholar
  139. 139.
    Bauer S, Wittkamp H, Schildmann S, Frey M, Hiller W, Hecksher T, Olsen NB, Gainaru C, Böhmer R (2013) Broadband dynamics in neat 4-methyl-3-heptanol and in mixtures with 2-ethyl-1-hexanol. J Chem Phys 139:134503CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Li X, Chen Z, Gao Y, Tu W, Wang L-M (2015) Probing the Debye dielectric relaxation in supercooled methanol. Front Mater 2:41; see also Ref [90]Google Scholar
  141. 141.
    Vij JK, Scaife WG, Calderwood JH (1981) The pressure and temperature dependence of the complex permittivity of heptanol isomers. J Phys D Appl Phys 14:733CrossRefGoogle Scholar
  142. 142.
    The ∆qmain,max3 data given in Fig. 2(b) of Ref. [10] were mislabeled. The correct values are shown here in Fig. 25(c)Google Scholar
  143. 143.
    Bierwirth SP, Böhmer R, Gainaru C (2017) Generic primary mechanical response of viscous liquids. Phys Rev Lett 119:248001CrossRefPubMedGoogle Scholar
  144. 144.
    Bierwirth SP, Gainaru C, Böhmer R (2018) Communication: correlation of terminal relaxation rate and viscosity enhancement in supramolecular small-molecule liquids. J Chem Phys 148:221102Google Scholar
  145. 145.
    Dannhauser W (1968) Dielectric relaxation in isomeric octyl alcohols. J Chem Phys 48:1918CrossRefGoogle Scholar
  146. 146.
    Johari GP, Dannhauser W (1969) Effect of pressure on dielectric relaxation in isomeric octanols. J Chem Phys 50:1862CrossRefGoogle Scholar
  147. 147.
    Fragiadakis D, Roland CM, Casalini R (2010) Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions. J Chem Phys 132:144505CrossRefPubMedGoogle Scholar
  148. 148.
    Young-Gonzales AR, Richert R (2016) Field induced changes in the ring/chain equilibrium of hydrogen bonded structures: 5-methyl-3-heptanol. J Chem Phys 145:074503CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Gainaru C, Wikarek M, Pawlus S, Paluch M, Figuli R, Wilhelm M, Hecksher T, Jakobsen B, Dyre JC, Böhmer R (2014) Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol. Colloid Polym Sci 292:1913CrossRefGoogle Scholar
  150. 150.
    Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24:269CrossRefGoogle Scholar
  151. 151.
    Wang L-M, Richert R (2004) Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols. J Chem Phys 121:11170CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Sanz A, Nogales A, Puente-Orench I, Jiménez-Ruiz M, Ezquerra TA (2011) Detection of early stage precursor during formation of plastic crystal ethanol from the supercooled liquid state: a simultaneous dielectric spectroscopy with neutron diffraction study. Phys Rev Lett 107:025502CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Wang Y, Griffin PJ, Holt A, Fan F, Sokolov AP (2014) Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering. J Chem Phys 140:104510CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Gabriel J, Pabst F, Blochowicz T (2017) Debye process and β-relaxation in 1-propanol probed by dielectric spectroscopy and depolarized dynamic light scattering. J Phys Chem B 121:8847CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Perakis F, Amann-Winkel K, Lehmkühler F, Sprung M, Pettersson D, Sellberg JA, Pathak H, Späh A, Cavalca F, Schlesinger D, Ricci A, Jain A, Massani B, Aubree F, Benmore CJ, Loerting T, Grübel G, Pettersson LGM, Nilsson A (2017) Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc Natl Acad Sci USA 114:8193CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Bertrand CE, Self JL, Copley JRD, Faraone A (2017) Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol. J Chem Phys 146:194501CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Yamaguchi T, Saito M, Yoshida K, Yamaguchi T, Yoda Y, Seto M (2018) Structural relaxation and viscoelasticity of a higher alcohol with mesoscopic structure. J Phys Chem Lett 9:298CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Grebenkin SY, Syutkin VM (2007) Dynamical heterogeneity in glassy n-butanol. Phys Rev B 76:054202CrossRefGoogle Scholar
  159. 159.
    Murohoshi T, Kaneda K, Ikegami M, Arai T (2003) Photoisomerization and isomer-specific addition of water in hydroxystilbenes. Photochem Photobiol Sci 2:1247CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Coelho R, Khac Manh D (1967) Utilisation de la Biréfringence Électro-optique pour l’Étude de la Relaxation Dipolaire dans les Liquides Polaires Faiblement Conducteurs. C R Acad Sci Paris C 264:641Google Scholar
  161. 161.
    Crossley J, Williams G (1977) Relaxation in hydrogen-bonded liquids studied by dielectric and Kerr-effect techniques. J Chem Soc Faraday Trans 273:1906CrossRefGoogle Scholar
  162. 162.
    Ookubo N (1991) New frequency-domain electric birefringence spectrometer using an advanced digital lock-in technique. Rev Sci Instrum 62:948CrossRefGoogle Scholar
  163. 163.
    Arenas-Guerrero P, Iglesias GR, Delgado ÁV, Jiménez ML (2016) Electric birefringence spectroscopy of montmorillonite particles. Soft Matter 12:4923CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Andrews SS, Boxer SG (2000) Vibrational Stark Effects of Nitriles. I. Methods and Experimental Results. J Phys Chem A 104:11853CrossRefGoogle Scholar
  165. 165.
    Handler P, Aspnes DE (1967) Electric-Field-Induced Spectral Shifts of the OH Vibrational Absorption Line in Alcohols. J Chem Phys 47:473CrossRefGoogle Scholar
  166. 166.
    Hiramatsu H, Hamaguchi H (2002) Association structures of N-methylacetamide in solution studied by infrared electroabsorption spectroscopy. Chem Phys Lett 361:457CrossRefGoogle Scholar
  167. 167.
    Hiramatsu H, Kato C, Hamaguchi H (2001) Development of infrared electroabsorption spectroscopy for liquids. Chem Phys Lett 347:403CrossRefGoogle Scholar
  168. 168.
    A related approach was exploited by Shilov SV, Müller M, Krüerke D, Heppke G, Skupin H, Kremer F (2002) Molecular arrangements and reorientation behavior in a dibenzopyrene-derivative ferroelectric columnar liquid crystal as studied by time-resolved Fourier-transform IR spectroscopy. Phys Rev E 65:021707Google Scholar
  169. 169.
    Johari GP, Goldstein M (1970) Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J Chem Phys 53:2372CrossRefGoogle Scholar
  170. 170.
    Ngai KL, Paluch M (2004) Classification of secondary relaxation in glass-formers based on dynamic properties. J Chem Phys 120:857CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Johari GP, Goldstein M (1971) Viscous liquids and glass transition. III. Secondary relaxation in aliphatic alcohols and other nonrigid molecules. J Chem Phys 55:4245CrossRefGoogle Scholar
  172. 172.
    For superheated MAs expectedly the gK → 1 limit is approached, see Dannhauser W, Bahe LW (1964) Dielectric constant of hydrogen bonded liquids. III. Superheated alcohols. J Chem Phys 40:3058Google Scholar
  173. 173.
    Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler EA, Böhmer R (2010) Nuclear-magnetic-resonance measurements reveal the origin of the Debye process in monohydroxy alcohols. Phys Rev Lett 105:258303CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Wieth P, Vogel M (2014) Dynamical and structural properties of monohydroxy alcohols exhibiting a Debye process. J Chem Phys 140:144507CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Based on Ref. [143] the structural mechanical response of MAs is expected to display the generic shapeGoogle Scholar
  176. 176.
    Chua YZ, Young-Gonzales AR, Richert R, Ediger MD, Schick C (2017) Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes. J Chem Phys 147:014502CrossRefPubMedGoogle Scholar
  177. 177.
    Jansson H, Swenson J (2011) The slow dielectric Debye relaxation of monoalcohols in confined geometries. J Chem Phys 134:104504CrossRefPubMedGoogle Scholar
  178. 178.
    Gainaru C, Schildmann S, Böhmer R (2011) Surface and confinement effects on the dielectric relaxation of a monohydroxy alcohol. J Chem Phys 135:174510CrossRefPubMedGoogle Scholar
  179. 179.
    Kipnusu WK, Elsayed M, Kossack W, Pawlus S, Adrjanowicz K, Tress M, Mapesa EU, Krause-Rehberg R, Kaminski K, Kremer F (2015) Confinement for more space: a larger free volume and enhanced glassy dynamics of 2-ethyl-1-hexanol in nanopores. J Phys Chem Lett 6:3708CrossRefPubMedGoogle Scholar
  180. 180.
    Jensen MH, Alba-Simionesco C, Niss K, Hecksher T (2015) A systematic study of the isothermal crystallization of the mono-alcohol n-butanol monitored by dielectric spectroscopy. J Chem Phys 143:134501CrossRefPubMedGoogle Scholar
  181. 181.
    Paluch M, Knapik J, Wojnarowska Z, Grzybowski A, Ngai KL (2016) Universal behavior of dielectric responses of glass formers: role of dipole-dipole interactions. Phys Rev Lett 116:025702CrossRefPubMedGoogle Scholar
  182. 182.
    Wang L-M, Richert R (2005) Identification of dielectric and structural relaxations in glass-forming secondary amides. J Chem Phys 123:054516CrossRefPubMedGoogle Scholar
  183. 183.
    Gainaru C, Bauer S, Vynokur E, Wittkamp H, Hiller W, Richert R, Böhmer R (2015) Dynamics in supercooled secondary amide mixtures: dielectric and hydrogen bond specific spectroscopies. J Phys Chem B 119:15769 and references cited thereinGoogle Scholar
  184. 184.
    Ediger MD (2017) Perspective: highly stable vapor-deposited glasses. J Chem Phys 147:210901CrossRefPubMedGoogle Scholar
  185. 185.
    Tylinski M, Chua YZ, Beasley MS, Schick C, Ediger MD (2016) Vapor deposited alcohol glasses reveal a wide range of kinetic stability. J Chem Phys 145:174506CrossRefPubMedGoogle Scholar
  186. 186.
    Tylinski M, Beasley MS, Chua YZ, Schick C, Ediger MD (2017) Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol. J Chem Phys 146:203317CrossRefPubMedGoogle Scholar
  187. 187.
    Young-Gonzales AR, Guiseppi-Elie A, Ediger MD, Richert R (2017) Modifying hydrogen-bonded structures by physical vapor deposition: 4-methyl-3-heptanol. J Chem Phys 147:194504CrossRefPubMedGoogle Scholar
  188. 188.
    Capponi S, Napolitano S, Wübbenhorst M (2012) Supercooled liquids with enhanced orientational order. Nat Commun 3:1233CrossRefPubMedGoogle Scholar
  189. 189.
    Kasina A, Putzeys T, Wübbenhorst M (2016) Dielectric and specific heat relaxations in vapor deposited glycerol. J Chem Phys 143:244504CrossRefGoogle Scholar
  190. 190.
    Davidson DW (1961) Dielectric relaxation in liquids II. Isomeric pentanediols. Can J Chem 39:21CrossRefGoogle Scholar
  191. 191.
    Fytas G, Dorfmüller T (1981) Depolarized light scattering studies of liquids: 1,5- and 2,4-pentanediol. J Chem Phys 75:5232CrossRefGoogle Scholar
  192. 192.
    Xing K, Chatterjee S, Saito T, Gainaru C, Sokolov AP (2016) Impact of hydrogen bonding on dynamics of hydroxyl-terminated polydimethylsiloxane. Macromolecules 49:3138CrossRefGoogle Scholar
  193. 193.
    Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Paluch M, Pawlus S, Zioło J (2005) Emergence of a new feature in the high pressure–high temperature relaxation spectrum of tri-propylene glycol. J Chem Phys 122:061102CrossRefPubMedGoogle Scholar
  194. 194.
    Jensen MH, Gainaru C, Alba-Simionesco C, Hecksher T, Niss K (2018) Slow rheological mode in glycerol and glycerol–water mixtures. Phys Chem Chem Phys 20:1716CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sebastian Peter Bierwirth
    • 1
  • Jennifer Bolle
    • 1
  • Stefan Bauer
    • 1
  • Christian Sternemann
    • 1
  • Catalin Gainaru
    • 1
  • Metin Tolan
    • 1
  • Roland Böhmer
    • 1
    Email author
  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations