Advertisement

The Calorimetric Glass Transition in a Wide Range of Cooling Rates and Frequencies

  • T. V. Tropin
  • J. W. P. Schmelzer
  • G. Schulz
  • C. Schick
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

The glass transition at common laboratory scan rates (K/min) has been a highly debated topic for the last decade. The continuous increase in the variety of available glass-forming materials and methods to characterize them maintains a research interest, as well as opens new perspective applications. In parallel, many different theoretical methods aimed at describing the glass transition have been proposed in the last 70 years. A general theory has yet to be developed and carefully tested. In the present chapter, we describe the results of theoretical and experimental investigations of the glass transition of a model polymer—polystyrene. State-of-the-art scanning calorimetry allows for measuring the temperature dependence of the isobaric heat capacity in an exceedingly wide range of cooling rates. Besides providing novel data on the glass transition of polymers at fast cooling rates, this allows for one to test the capabilities of convenient theoretical methods in modelling the kinetics of the glass transition under very different vitrifying conditions. The glass transition of atactic polystyrene was investigated at different cooling rates in the range of qc = 10−6–104 K/s. Dependencies of the glass transition temperature, Tg, and the shape of heat capacity, Cp, curves on qc were obtained. Furthermore, we have applied a number of different theoretical methods to test their capability to model the glass transition kinetics for such a wide range of control parameter qc. The list of investigated theoretical methods consists of the Tool–Narayanaswamy–Moynihan approach, Adam–Gibbs theory, an irreversible thermodynamics-based approach and some of their modern modifications. As a first step, we show that most of these methods are capable of fitting the cooling rate dependencies of the glass transition parameters (Tg and others). The model parameters in this case are close to literature data. Furthermore, we show that while fitting the Cp(T) curves for a single cooling–heating experiment bears acceptable results, the parameters have to be changed with respect to qc, with their difference becoming significant for very slow or very fast cooling rates. Thus, none of the methods can be applied successfully to model and predict the kinetics of glass transition in a wide range of q. We compare the results of different methods and propose an expression for the relaxation time dependence on model parameters within an irreversible thermodynamics approach. Thus, we extend the experimental results for polystyrene and state that the presently applied theoretical methods are incapable of accurately describing the heat capacity temperature curves Cp(T) for a wide range of cooling/heating rates, q. The present methods and expressions for relaxation time τ do not account for a certain additional effect spanning over different rates of temperature change, which has yet to be discovered.

Keywords

Glass transition Polymers Polysterene (PS) Calorimetry Glass transition kinetics 

Abbreviations

5PPE

5-phenyl-4-ether

ATHAS

Advanced thermal analysis system (data bank)

AC

Alternating current (calorimetry)

AG

Adam–Gibbs (theory)

CRR

Cooperatively rearranging regions

DFSC

Differential fast-scanning calorimetry

DSC

Differential scanning calorimetry

FSC

Fast-scanning (chip) calorimetry

GS

Gutzow–Schmelzer (method)

KAHR

Kovacs–Aklonis–Hutchinson–Ramos (method)

PS

Polystyrene

TNM

Tool–Narayanaswamy–Moynihan (method)

TMDSC

Temperature-modulated differential scanning calorimetry

VFT

Vogel–Fulcher–Tammann (law)

Notes

Acknowledgements

CS acknowledges the financial support from the Ministry of Education and Science of the Russian Federation, grant 14.Y26.31.0019. T. V. and J. W. P. acknowledge the financial support by the Heisenberg-Landau program of the German Federal Ministry of Education and Research (BMBF, Germany).

References

  1. 1.
    Stillinger FH, Debenedetti PG (2013) Glass Transition Thermodynamics and Kinetics. Annu Rev Condens Matter Phys 4:263–285.  https://doi.org/10.1146/annurev-conmatphys-030212-184329CrossRefGoogle Scholar
  2. 2.
    Gutzow IS, Schmelzer JWP (2013) The vitreous state: thermodynamics, structure, rheology, and crystallization. Springer, Berlin.  https://doi.org/10.1007/978-3-642-34633-0CrossRefGoogle Scholar
  3. 3.
    Schmelzer JWP, Gutzow IS, Mazurin OV, Priven AI, Todorova SV, Petroff BP (2011) Glasses and the glass transition. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  https://doi.org/10.1002/9783527636532CrossRefGoogle Scholar
  4. 4.
    Cavagna A (2009) Supercooled liquids for pedestrians. Phys Rep 476:51–124.  https://doi.org/10.1016/j.physrep.2009.03.003CrossRefGoogle Scholar
  5. 5.
    Lubchenko V (2015) Theory of the structural glass transition: a pedagogical review. Adv Phys 64:283–443.  https://doi.org/10.1080/00018732.2015.1057979CrossRefGoogle Scholar
  6. 6.
    Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MKs. Rev Sci Instrum 78  https://doi.org/10.1063/1.2751411
  7. 7.
    Schawe JEK (2015) Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than six decades. Thermochim Acta 603:128–134.  https://doi.org/10.1016/j.tca.2014.05.025CrossRefGoogle Scholar
  8. 8.
    Tropin TV, Schulz G, Schmelzer JWP, Schick C (2015) Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates. J Non Cryst Solids 409:63–75.  https://doi.org/10.1016/j.jnoncrysol.2014.11.001CrossRefGoogle Scholar
  9. 9.
    Narayanaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–498.  https://doi.org/10.1111/j.1151-2916.1971.tb12186.xCrossRefGoogle Scholar
  10. 10.
    Vogel H (1921) Das Temperaturabhängigkeit Gesetz der Viskosität von Flüssigkeiten. Phys Zeitschrift 22:645Google Scholar
  11. 11.
    Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355.  https://doi.org/10.1111/j.1151-2916.1925.tb16731.xCrossRefGoogle Scholar
  12. 12.
    Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift Für Anorg Und Allg Chemie 156:245–257.  https://doi.org/10.1002/zaac.19261560121CrossRefGoogle Scholar
  13. 13.
    Adam G, Gibbs JH (1965) on the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139.  https://doi.org/10.1063/1.1696442CrossRefGoogle Scholar
  14. 14.
    Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RL, van der Vegte EW (2002) High-speed calorimetry for the study of the kinetics of (de)vitrification, crystallization, and melting of macromolecules. Macromolecules 35:3601–3613.  https://doi.org/10.1021/ma011122uCrossRefGoogle Scholar
  15. 15.
    Adamovsky S, Minakov A, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63.  https://doi.org/10.1016/S0040-6031(03)00182-5CrossRefGoogle Scholar
  16. 16.
    Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7.  https://doi.org/10.1016/j.tca.2003.07.015CrossRefGoogle Scholar
  17. 17.
    Minakov AA, Adamovsky SA, Schick C (2005) Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185.  https://doi.org/10.1016/j.tca.2005.01.073CrossRefGoogle Scholar
  18. 18.
    Kolesov IS, Androsch R, Radusch H-J (2004) Non-isothermal crystallization of polyethylenes as function of cooling rate and concentration of short chain branches. J Therm Anal Calorim 78:885–895.  https://doi.org/10.1007/s10973-004-0455-yCrossRefGoogle Scholar
  19. 19.
  20. 20.
    Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim Acta 522:36–45.  https://doi.org/10.1016/j.tca.2011.02.031CrossRefGoogle Scholar
  21. 21.
    van Herwaarden AW (2005) Overview of calorimeter chips for various applications. Thermochim Acta 432:192–201.  https://doi.org/10.1016/j.tca.2005.04.027CrossRefGoogle Scholar
  22. 22.
    Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13.  https://doi.org/10.1016/j.tca.2010.03.019CrossRefGoogle Scholar
  23. 23.
    Zhuravlev E, Schick C (2016) Non-adiabatic scanning calorimeter for controlled fast cooling and heating. In: Fast Scanning Calorimetry. Springer International Publishing, Cham, pp 81–104.  https://doi.org/10.1007/978-3-319-31329-0_2
  24. 24.
    Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C (2007) Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta 461:96–106.  https://doi.org/10.1016/j.tca.2007.03.020CrossRefGoogle Scholar
  25. 25.
    Minakov AA, Schick C (2015) Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta 603:205–217.  https://doi.org/10.1016/j.tca.2014.05.030CrossRefGoogle Scholar
  26. 26.
    Minakov AA, Roy SB, Bugoslavsky YV, Cohen LF (2005) Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields. Rev Sci Instrum 76:43906.  https://doi.org/10.1063/1.1889432CrossRefGoogle Scholar
  27. 27.
    Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14–21.  https://doi.org/10.1016/j.tca.2010.03.020CrossRefGoogle Scholar
  28. 28.
    Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 45:3755–3763.  https://doi.org/10.1016/j.polymer.2004.03.072CrossRefGoogle Scholar
  29. 29.
    Gradys A, Sajkiewicz P, Minakov AA, Adamovsky S, Schick C, Hashimoto T, Saijo K (2005) Crystallization of polypropylene at various cooling rates. Mater Sci Eng, A 413–414:442–446.  https://doi.org/10.1016/j.msea.2005.08.167CrossRefGoogle Scholar
  30. 30.
    Minakov AA, Mordvintsev DA, Schick C (1000) Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K s−1 ; 5 ms). Faraday Discuss 128(2005):261–270.  https://doi.org/10.1039/b403441dCrossRefGoogle Scholar
  31. 31.
    De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567.  https://doi.org/10.1021/ma052525nCrossRefGoogle Scholar
  32. 32.
    Minakov AA, Mordvintsev DA, Tol R, Schick C (2006) Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta 442:25–30.  https://doi.org/10.1016/j.tca.2005.11.032CrossRefGoogle Scholar
  33. 33.
    Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci, Part B: Polym Phys 44:1364–1377.  https://doi.org/10.1002/polb.20789CrossRefGoogle Scholar
  34. 34.
    Tol RT, Minakov AA, Adamovsky SA, Mathot VBF, Schick C (2006) Metastability of polymer crystallites formed at low temperature studied by ultra fast calorimetry: polyamide 6 confined in sub-micrometer droplets versus bulk PA6. Polymer 47:2172–2178.  https://doi.org/10.1016/j.polymer.2006.01.052CrossRefGoogle Scholar
  35. 35.
    De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031.  https://doi.org/10.1021/ma071491bCrossRefGoogle Scholar
  36. 36.
    Gradys A, Sajkiewicz P, Adamovsky S, Minakov A, Schick C (2007) Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochim Acta 461:153–157.  https://doi.org/10.1016/j.tca.2007.05.023CrossRefGoogle Scholar
  37. 37.
    Minakov AA, Wurm A, Schick C (2007) Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E 23:43.  https://doi.org/10.1140/epje/i2007-10173-8CrossRefPubMedGoogle Scholar
  38. 38.
    Ray VV, Banthia AK, Schick C (2007) Fast isothermal calorimetry of modified polypropylene clay nanocomposites. Polymer 48:2404–2414.  https://doi.org/10.1016/j.polymer.2007.02.055CrossRefGoogle Scholar
  39. 39.
    Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875–881.  https://doi.org/10.1002/marc.200600844CrossRefGoogle Scholar
  40. 40.
    Krumme A, Lehtinen A, Adamovsky S, Schick C, Roots J, Viikna A (2008) Crystallization behavior of some unimodal and bimodal linear low-density polyethylenes at moderate and high supercooling. J Polym Sci, Part B: Polym Phys 46:1577–1588.  https://doi.org/10.1002/polb.21494CrossRefGoogle Scholar
  41. 41.
    Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611.  https://doi.org/10.1007/s00216-009-3169-yCrossRefPubMedGoogle Scholar
  42. 42.
    Brucato V, Piccarolo S, La Carrubba V (2002) An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci 57:4129–4143.  https://doi.org/10.1016/S0009-2509(02)00360-3CrossRefGoogle Scholar
  43. 43.
    Janeschitz-Kriegl H (2010) Crystallization modalities in polymer melt processing. Springer Vienna, Vienna.  https://doi.org/10.1007/978-3-211-87627-5
  44. 44.
    Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14.  https://doi.org/10.1016/j.tca.2015.07.009CrossRefGoogle Scholar
  45. 45.
    Lopeandía AF, Cerdó LI, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejo J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76: 65104.  https://doi.org/10.1063/1.1921567
  46. 46.
    Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sensors Actuators A Phys 143:256–264.  https://doi.org/10.1016/j.sna.2007.11.006CrossRefGoogle Scholar
  47. 47.
    Merzlyakov M (2006) Method of rapid (100,000 Ks−1) controlled cooling and heating of thin samples. Thermochim Acta 442:52–60.  https://doi.org/10.1016/j.tca.2005.11.018CrossRefGoogle Scholar
  48. 48.
    van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46–52.  https://doi.org/10.1016/j.tca.2011.05.025CrossRefGoogle Scholar
  49. 49.
    Iervolino E, van Herwaarden AW, van Herwaarden FG, van de Kerkhof E, van Grinsven PPW, Leenaers ACHI, Mathot VBF, Sarro PM (2011) Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:53–59.  https://doi.org/10.1016/j.tca.2011.01.023CrossRefGoogle Scholar
  50. 50.
    Poel GV, Sargsyan A, Mathot V, Assche GV, Wurm A, Schick C, Krumme A, Zhou D (2011) Recommendation for temperature calibration of fast scanning calorimeters (FsCs) for sample mass and scan rate. Beuth Verlag GmbH, BerlinGoogle Scholar
  51. 51.
    Vanden Poel G, Istrate D, Magon A, Mathot V (2012) Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim 110:1533–1546.  https://doi.org/10.1007/s10973-012-2722-7CrossRefGoogle Scholar
  52. 52.
    Baur H, Wunderlich B (1998) About complex heat capacities and temperature-modulated calorimetry. J Therm Anal Calorim 54:437–465.  https://doi.org/10.1023/A:1010126005720CrossRefGoogle Scholar
  53. 53.
    Schäfer K (1940) Die Stoßanregung intramolekularer Schwingungen in Gasen und Gasmischungen. VII. Theorie der Schalldispersion bei Vorhandensein mehrerer Normalschwingungen, Zeitschrift Für Phys Chemie 46B.  https://doi.org/10.1515/zpch-1940-4613
  54. 54.
    Jeong Y-H (2001) Modern calorimetry: going beyond tradition. Thermochim Acta 377:1–7.  https://doi.org/10.1016/S0040-6031(01)00538-XCrossRefGoogle Scholar
  55. 55.
    Alig I (1997) Ultrasonic relaxation and complex heat capacity. Thermochim Acta 304–305:35–49.  https://doi.org/10.1016/S0040-6031(97)00174-3CrossRefGoogle Scholar
  56. 56.
    Khalife A, Pathak U, Richert R (2011) Heating liquid dielectrics by time dependent fields. Eur Phys J B 83:429–435.  https://doi.org/10.1140/epjb/e2011-20599-5CrossRefGoogle Scholar
  57. 57.
    Richert R (2011) Calorimetry based on energy absorbed from time-dependent fields. J Non Cryst Solids 357:726–730.  https://doi.org/10.1016/j.jnoncrysol.2010.05.088CrossRefGoogle Scholar
  58. 58.
    Richert R (2011) Reverse calorimetry of a supercooled liquid: propylene carbonate. Thermochim Acta 522:28–35.  https://doi.org/10.1016/j.tca.2010.09.016CrossRefGoogle Scholar
  59. 59.
    Birge N (1986) Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition. Phys Rev B 34:1631–1642.  https://doi.org/10.1103/PhysRevB.34.1631CrossRefGoogle Scholar
  60. 60.
    Suga H (2001) Adiabatic calorimeter as an ultra-low frequency spectrometer: interplay between phase and glass transitions in solids. Thermochim Acta 377:35–49.  https://doi.org/10.1016/S0040-6031(01)00540-8CrossRefGoogle Scholar
  61. 61.
    Suga H (2005) Ultra-slow relaxation in ice and related substances. Proc Japan Acad Ser B 81:349–362.  https://doi.org/10.2183/pjab.81.349CrossRefGoogle Scholar
  62. 62.
    Schick C, Tanneberger H, Donth E (1980) Ergebnisse direkter messungen der enthalpieretardation in PVC und ihr zusammenhang mit dem glasübergang und der struktur, Die Makromol. Chemie, Rapid Commun 1:407–409.  https://doi.org/10.1002/marc.1980.030010611CrossRefGoogle Scholar
  63. 63.
    Schick C, Tanneberger H, Donth E (1982) Zeitabhängigkeit der Enthalpie im Glasübergangsbereich von Polyvinylchlorid. Acta Polym 33:163–168.  https://doi.org/10.1002/actp.1982.010330301CrossRefGoogle Scholar
  64. 64.
    Hemminger W, Höhne GWH (1984) Calorimetry - fundamentals and practice. Vch., Weinheim.  https://doi.org/10.1002/bbpc.19850891130
  65. 65.
    Höhne GWH, Hemminger WF, Flammersheim H-J (2003) Differential scanning calorimetry. Springer, Berlin.  https://doi.org/10.1007/978-3-662-06710-9
  66. 66.
    Boller A, Schick C, Wunderlich B (1995) Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta 266:97–111.  https://doi.org/10.1016/0040-6031(95)02552-9CrossRefGoogle Scholar
  67. 67.
    Schawe JEK (1995) Principles for the interpretation of modulated temperature DSC measurements. Part 1. Glass transition. Thermochim Acta 261:183–194.  https://doi.org/10.1016/0040-6031(95)02315-SCrossRefGoogle Scholar
  68. 68.
    Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 1. Influence of non-linear thermal response. Thermochim Acta 330:55–64.  https://doi.org/10.1016/S0040-6031(99)00040-4CrossRefGoogle Scholar
  69. 69.
    Höhne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of TMDSC: Part1: basic considerations. Thermochim Acta 391:51–67.  https://doi.org/10.1016/S0040-6031(02)00163-6CrossRefGoogle Scholar
  70. 70.
    Merzlyakov M, Höhne GWH, Schick C (2002) Calibration of magnitude and phase angle of TMDSC: Part 2. Calibration practice. Thermochim Acta 391:69–80.  https://doi.org/10.1016/S0040-6031(02)00164-8CrossRefGoogle Scholar
  71. 71.
    Kamasa P, Merzlyakov M, Pyda M, Pak J, Schick C, Wunderlich B (2002) Multi-frequency heat capacity measured with different types of TMDSC. Thermochim Acta 392–393:195–207.  https://doi.org/10.1016/S0040-6031(02)00102-8CrossRefGoogle Scholar
  72. 72.
    Schawe JEK, Hütter T, Heitz C, Alig I, Lellinger D (2006) Stochastic temperature modulation: A new technique in temperature-modulated DSC. Thermochim Acta 446:147–155.  https://doi.org/10.1016/j.tca.2006.01.031CrossRefGoogle Scholar
  73. 73.
    Merzlyakov M, Schick C (2001) Simultaneous multi-frequency TMDSC measurements. Thermochim Acta 377:193–204.  https://doi.org/10.1016/S0040-6031(01)00554-8CrossRefGoogle Scholar
  74. 74.
    Merzlyakov M, Schick C (2001) Step response analysis in DSC — a fast way to generate heat capacity spectra. Thermochim Acta 380:5–12.  https://doi.org/10.1016/S0040-6031(01)00631-1CrossRefGoogle Scholar
  75. 75.
    Sullivan P, Seidel G (1966) An ac temperature technique for measuring heat capacities. Ann Acad Sci Fenn. A VI 58–62Google Scholar
  76. 76.
    Kraftmakher Y (2004) Modulation calorimetry. Springer, Berlin. http://www.springer.com/gp/book/9783540210825
  77. 77.
    Christensen T, Olsen NB, Dyre JC, Tokuyama M, Oppenheim I, Nishiyama H (2008) Can the frequency dependent isobaric specific heat be measured by thermal effusion methods? In: AIP Conference Proceedings, AIP, pp 139–141.  https://doi.org/10.1063/1.2897769
  78. 78.
    Jakobsen B, Olsen NB, Christensen T (2010) Frequency-dependent specific heat from thermal effusion in spherical geometry. Phys Rev E 81:61505.  https://doi.org/10.1103/PhysRevE.81.061505CrossRefGoogle Scholar
  79. 79.
    Christensen T, Olsen NB, Dyre JC (2007) Conventional methods fail to measure cp(w) of glass-forming liquids. Phys Rev E 75:41502.  https://doi.org/10.1103/PhysRevE.75.041502CrossRefGoogle Scholar
  80. 80.
    Birge NO, Nagel SSR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54:2674–2677.  https://doi.org/10.1103/PhysRevLett.54.2674CrossRefPubMedGoogle Scholar
  81. 81.
    Christensen T (1985) The frequency dependence of the specific heat at the glass transition. Le J Phys Colloq 46: C8-635-C8-637.  https://doi.org/10.1051/jphyscol:19858102
  82. 82.
    Glorieux C, Nelson KA, Hinze G, Fayer MD (2002) Thermal, structural, and orientational relaxation of supercooled salol studied by polarization-dependent impulsive stimulated scattering. J Chem Phys 116:3384–3395.  https://doi.org/10.1063/1.1445749CrossRefGoogle Scholar
  83. 83.
    Bentefour EH, Glorieux C, Chirtoc M, Thoen J (2003) Broadband photopyroelectric thermal spectroscopy of a supercooled liquid near the glass transition. J Appl Phys 93:9610–9614.  https://doi.org/10.1063/1.1576300CrossRefGoogle Scholar
  84. 84.
    Merzlyakov M (2003) Integrated circuit thermopile as a new type of temperature modulated calorimeter. Thermochim Acta 403:65–81.  https://doi.org/10.1016/S0040-6031(03)00083-2CrossRefGoogle Scholar
  85. 85.
    Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci, Part B: Polym Phys 44:2996–3005.  https://doi.org/10.1002/polb.20921CrossRefGoogle Scholar
  86. 86.
    Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur. Phys. J. Spec. Top. 141:153–160.  https://doi.org/10.1140/epjst/e2007-00033-yCrossRefGoogle Scholar
  87. 87.
    Ahrenberg M, Shoifet E, Whitaker KR, Huth H, Ediger MD, Schick C (2012) Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films. Rev Sci Instrum 83:33902.  https://doi.org/10.1063/1.3692742CrossRefGoogle Scholar
  88. 88.
    Shoifet E, Chua YZ, Huth H, Schick C (2013) High frequency alternating current chip nano calorimeter with laser heating. Rev Sci Instrum 84:73903.  https://doi.org/10.1063/1.4812349CrossRefGoogle Scholar
  89. 89.
    Svanidze AV, Huth H, Lushnikov SG, Kojima S, Schick C (2009) Phase transition in tetragonal hen egg-white lysozyme crystals. Appl Phys Lett 95:263702.  https://doi.org/10.1063/1.3275858CrossRefGoogle Scholar
  90. 90.
    Svanidze AV, Huth H, Lushnikov SG, Schick C (2012) Study of phase transition in tetragonal lysozyme crystals by AC-nanocalorimetry. Thermochim Acta 544:33–37.  https://doi.org/10.1016/j.tca.2012.06.013CrossRefGoogle Scholar
  91. 91.
    Ahrenberg M, Chua YZ, Whitaker KR, Huth H, Ediger MD, Schick C (2013) In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. J Chem Phys 138:24501.  https://doi.org/10.1063/1.4773354CrossRefGoogle Scholar
  92. 92.
    Weyer S, Hensel A, Schick C (1997) Phase angle correction for TMDSC in the glass-transition region. Thermochim Acta 304–305:267–275.  https://doi.org/10.1016/S0040-6031(97)00180-9CrossRefGoogle Scholar
  93. 93.
    Boucher VM, Cangialosi D, Yin H, Schönhals A, Alegría A, Colmenero J (2012) Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8:5119.  https://doi.org/10.1039/c2sm25419kCrossRefGoogle Scholar
  94. 94.
    Priestley RD, Cangialosi D, Napolitano S (2015) On the equivalence between the thermodynamic and dynamic measurements of the glass transition in confined polymers. J Non Cryst Solids 407:288–295.  https://doi.org/10.1016/j.jnoncrysol.2014.09.048CrossRefGoogle Scholar
  95. 95.
    Cangialosi D, Alegría A, Colmenero J (2016) Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Prog Polym Sci 54–55:128–147.  https://doi.org/10.1016/j.progpolymsci.2015.10.005CrossRefGoogle Scholar
  96. 96.
    Perez-de-Eulate NG, Di Lisio V, Cangialosi D (2017) Glass transition and molecular dynamics in polystyrene nanospheres by fast scanning calorimetry. ACS Macro Lett. 6:859–863.  https://doi.org/10.1021/acsmacrolett.7b00484CrossRefGoogle Scholar
  97. 97.
    Schick C, Lexa D, Leibowitz L (2012) Differential scanning calorimetry and differential thermal analysis. In: Kaufmann EN (ed) Characterization Materials, 1st ed. Wiley Inc, New York, pp 483–495Google Scholar
  98. 98.
    Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non Cryst Solids 169:211–266.  https://doi.org/10.1016/0022-3093(94)90321-2CrossRefGoogle Scholar
  99. 99.
    Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range*. J Am Ceram Soc 29:240–253.  https://doi.org/10.1111/j.1151-2916.1946.tb11592.xCrossRefGoogle Scholar
  100. 100.
    Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16.  https://doi.org/10.1111/j.1151-2916.1976.tb09376.xCrossRefGoogle Scholar
  101. 101.
    Sarge SM, Hemminger W, Gmelin E, Höhne GWH, Cammenga HK, Eysel W (1997) Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J Therm Anal 49:1125–1134.  https://doi.org/10.1007/BF01996802CrossRefGoogle Scholar
  102. 102.
    Hao N, Böhning M, Schönhals A (2007) Dielectric properties of nanocomposites based on polystyrene and polyhedral oligomeric phenethyl-silsesquioxanes. Macromolecules 40:9672–9679.  https://doi.org/10.1021/ma071777gCrossRefGoogle Scholar
  103. 103.
    Chua YZ, Schulz G, Shoifet E, Huth H, Zorn R, Scmelzer JWP, Schick C (2014) Glass transition cooperativity from broad band heat capacity spectroscopy. Colloid Polym Sci 292:1893–1904.  https://doi.org/10.1007/s00396-014-3280-2CrossRefGoogle Scholar
  104. 104.
    Beiner M, Garwe F, Schröter K, Donth E (1994) Dynamic shear modulus in the splitting region of poly(alkyl methacrylates). Colloid Polym Sci 272:1439–1446.  https://doi.org/10.1007/BF00654174CrossRefGoogle Scholar
  105. 105.
    O’Reilly JM, Hodge IM (1991) Effects of heating rate on enthalpy recovery in polystyrene. J Non Cryst Solids 131–133:451–456.  https://doi.org/10.1016/0022-3093(91)90338-7CrossRefGoogle Scholar
  106. 106.
    Hadač J, Slobodian P, Říha P, Sáha P, Rychwalski RW, Emri I, Kubát J (2007) Effect of cooling rate on enthalpy and volume relaxation of polystyrene. J Non Cryst Solids 353:2681–2691.  https://doi.org/10.1016/j.jnoncrysol.2007.05.017CrossRefGoogle Scholar
  107. 107.
    Wunderlich B (1995) The ATHAS database on heat capacities of polymers. Pure Appl Chem 67:1019–1026.  https://doi.org/10.1351/pac199567061019CrossRefGoogle Scholar
  108. 108.
    Pyda M, Wunderlich B (2013) ATHAS Data Bank. http://www.springermaterials.com
  109. 109.
    Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys Ed 17:1097–1162.  https://doi.org/10.1002/pol.1979.180170701CrossRefGoogle Scholar
  110. 110.
    Mazinani SKS, Richert R (2012) Enthalpy recovery in glassy materials: heterogeneous versus homogenous models. J. Chem. Phys. 136:174515.  https://doi.org/10.1063/1.4712032CrossRefPubMedGoogle Scholar
  111. 111.
    Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans, LondonGoogle Scholar
  112. 112.
    Möller J, Gutzow I, Schmelzer JWP (2006) Freezing-in and production of entropy in vitrification. J Chem Phys 125:94505.  https://doi.org/10.1063/1.2346673CrossRefGoogle Scholar
  113. 113.
    Tropin TV, Schmelzer JWP, Schick C (2011) On the dependence of the properties of glasses on cooling and heating rates I. Entropy, entropy production and glass transition temperature. J Non Cryst Solids 357: 1291–1302.  https://doi.org/10.1016/j.jnoncrysol.2010.11.111
  114. 114.
    Tropin TV, Schmelzer JWP, Schick C (2011) On the dependence of the properties of glasses on cooling and heating rates II. Prigogine-Defay ratio, fictive temperature and fictive pressure. J Non Cryst Solids 357: 1303–1309.  https://doi.org/10.1016/j.jnoncrysol.2010.12.005
  115. 115.
    Gutzow I, Grigorova T, Avramov I, Schmelzer JWP (2002) Generic phenomenology of vitrification and relaxation and the Kohlrausch and Maxwell equations. Phys Chem Glas 43C: 477–486. http://www.ipc.bas.bg/PPages/Avramov/Edinb_477-486.pdf
  116. 116.
    Moynihan CT, Macedo PB, Montrose CJ, Gupta PK, DeBolt MA, Dill JF, Dom BE, Drake PW, Easteal AJ, Elterman PB, Moeller RP, Sasabe H, Wilder JA (1976) Structural relaxation in vitreous materials. Ann NY Acad Sci 279: 15–35.  https://doi.org/10.1111/j.1749-6632.1976.tb39688.x
  117. 117.
    Weyer S, Merzlyakov M, Schick C (2001) Application of an extended Tool–Narayanaswamy–Moynihan model. Part 1. Description of vitrification and complex heat capacity measured by temperature-modulated DSC. Thermochim Acta 377:85–96.  https://doi.org/10.1016/S0040-6031(01)00543-3CrossRefGoogle Scholar
  118. 118.
    Schmelzer JWP (2012) Kinetic criteria of glass formation and the pressure dependence of the glass transition temperature. J Chem Phys 136:74512.  https://doi.org/10.1063/1.3685510CrossRefGoogle Scholar
  119. 119.
    Schmelzer JWP, Tropin TV (2015) Kinetic criteria of glass-formation, pressure dependence of the glass-transition temperature, and the Prigogine-Defay ratio. J Non Cryst Solids 407.  https://doi.org/10.1016/j.jnoncrysol.2014.07.049
  120. 120.
    Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural relaxation. J Am Ceram Soc 67:504–511.  https://doi.org/10.1111/j.1151-2916.1984.tb19643.xCrossRefGoogle Scholar
  121. 121.
    Hutchinson JM, Montserrat S, Calventus Y, Cortés P (2000) Application of the Adam–Gibbs equation to the non-equilibrium glassy state. Macromolecules 33:5252–5262.  https://doi.org/10.1021/ma992015rCrossRefGoogle Scholar
  122. 122.
    Brunacci A, Cowie JMG, Ferguson R, Gómez Ribelles JL, Vidaurre Garayo A (1996) Structural relaxation in polystyrene and some polystyrene derivatives. Macromolecules 29:7976–7988.  https://doi.org/10.1021/ma960336mCrossRefGoogle Scholar
  123. 123.
    Gómez JL, Ribelles M, Monleón Pradas M, Vidaurre Garayo A, Romero Colomer F, Mas Estelles J, Meseguer Duenas JM (1995) Structural relaxation of glass-forming polymers based on an equation for configurational entropy. 2. Structural relaxation in polymethacrylates. Macromolecules 28:5878–5885.  https://doi.org/10.1021/ma00121a026CrossRefGoogle Scholar
  124. 124.
    Cangialosi D, Boucher VM, Alegría A, Colmenero J (2013) Direct evidence of two equilibration mechanisms in glassy polymers. Phys Rev Lett 111:95701.  https://doi.org/10.1103/PhysRevLett.111.095701CrossRefGoogle Scholar
  125. 125.
    Schmelzer JWP, Tropin TV (2013) Dependence of the width of the glass transition interval on cooling and heating rates. J Chem Phys 138:34507.  https://doi.org/10.1063/1.4775802CrossRefGoogle Scholar
  126. 126.
    Tropin TV, Schmelzer JWP, Aksenov VL (2017) On the possibility of modeling of polymers glass transition in a wide range of cooling and heating rates. J Mol Liq 235:172–177.  https://doi.org/10.1016/j.molliq.2016.12.009CrossRefGoogle Scholar
  127. 127.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313.  https://doi.org/10.1093/comjnl/7.4.308CrossRefGoogle Scholar
  128. 128.
    Koh YP, Simon SL (2013) Enthalpy recovery of polystyrene: does a long-term aging plateau exist? Macromolecules 46:5815–5821.  https://doi.org/10.1021/ma4011236CrossRefGoogle Scholar
  129. 129.
    Liu G, Zuo Y, Zhao D, Zhang M (2014) Study on enthalpy relaxation of polystyrene by assuming the existence of an intermediate aging plateau. J Non Cryst Solids 402:160–165.  https://doi.org/10.1016/j.jnoncrysol.2014.06.002CrossRefGoogle Scholar
  130. 130.
    Liu G, Li L, Zheng Y, Zuo Y (2013) Temperature gradient in sample and its effect on enthalpy relaxation model fitting of polystyrene. J Non Cryst Solids 365:13–22.  https://doi.org/10.1016/j.jnoncrysol.2013.01.017CrossRefGoogle Scholar
  131. 131.
    Richert R (2011) Heat capacity in the glass transition range modeled on the basis of heterogeneous dynamics. J Chem Phys 134:144501.  https://doi.org/10.1063/1.3577580CrossRefPubMedGoogle Scholar
  132. 132.
    Liu G, Zuo Y, Lin J, Zhao D (2014) Study on enthalpy relaxation of glassy polystyrene using a structure-dependent Kohlrausch stretch exponent combined with coupling model. Eur Phys J E Soft Matter 37:63.  https://doi.org/10.1140/epje/i2014-14063-8CrossRefGoogle Scholar
  133. 133.
    Simon SL, Sobieski JW, Plazek DJ (2001) Volume and enthalpy recovery of polystyrene. Polymer 42:2555–2567.  https://doi.org/10.1016/S0032-3861(00)00623-6CrossRefGoogle Scholar
  134. 134.
    Wang LM, Velikov V, Angell CA (2002) Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys 117:10184–10192.  https://doi.org/10.1063/1.1517607CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • T. V. Tropin
    • 1
  • J. W. P. Schmelzer
    • 2
  • G. Schulz
    • 2
  • C. Schick
    • 2
    • 3
  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute of Physics and Competence Center CALORUniversity of RostockRostockGermany
  3. 3.Butlerov Institute of ChemistryKazan Federal UniversityKazanRussia

Personalised recommendations