Advertisement

PAPA and Related Syndromes

  • Angelo Valerio Marzano
  • Alessandro Borghi
  • Massimo Cugno
Chapter

Abstract

Pyoderma gangrenosum (PG) is a prototypical neutrophilic dermatosis that usually manifests itself in the form of cutaneous ulcers with undermined erythematous-violaceous borders. It may be isolated or associated with systemic conditions (i.e. inflammatory bowel diseases, rheumatological disorders and lymphoproliferation), or occur in the context of autoinflammatory syndromes such as PAPA (pyogenic arthritis, PG and acne) [1], PASH (PG, acne and suppurative hidradenitis) [2–4] or other more recently described syndromes such as PAPASH (pyogenic arthritis, acne, PG and suppurative hidradenitis) [5]. Autoinflammatory diseases (AIDs) are characterised by apparently unprovoked episodes of systemic inflammation in the absence of the typical features of autoimmunity, such as autoantibodies or antigen-specific T lymphocytes [6]. All of the autoinflammatory syndromes described here have the shared characteristic of skin involvement, hallmarked by an accumulation of neutrophils. Inflammatory conditions characterised by infiltrates mainly consisting of mature neutrophils without infection are defined as neutrophilic dermatoses. Originally, the main forms of neutrophilic dermatoses included prototypical conditions such as PG, Sweet’s syndrome, subcorneal pustular dermatosis, and erythema elevatum diutinum [7], but this list was subsequently extended to other diseases, including syndromic entities. From a pathophysiological point of view, these neutrophilic dermatoses present high levels of the same pro-inflammatory cytokines, chemokines and tissue damage effector molecules as those found in AIDs [8, 9]. Taken together, these aspects suggest that autoinflammatory syndromes and neutrophilic dermatoses have the common pathological mechanisms of an over-activated innate immune system leading to the increased production of the IL-1 family and “sterile” neutrophil-rich cutaneous inflammation. The autoinflammatory syndromes characterised by neutrophilic dermatoses therefore represent a model of integration between two conditions that can probably be considered “innate immune disorders” [6, 9].

References

  1. 1.
    Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, Lovett M. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11:961–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Braun-Falco M, Kovnerystyy O, Lohse P, Ruzicka T. Pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH) - a new autoinflammatory syndrome distinct from PAPA syndrome. J Am Acad Dermatol. 2012;66:409–15.PubMedCrossRefGoogle Scholar
  3. 3.
    Marzano AV, Ishak RS, Colombo A, Caroli F, Crosti C. Pyoderma gangrenosum, acne and suppurative hidradenitis syndrome following bowel bypass surgery. Dermatology. 2012;225:215–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Marzano AV, Ceccherini I, Gattorno M, Fanoni D, Caroli F, Rusmini M, Grossi A, De Simone C, Borghi OM, Meroni PL, Crosti C, Cugno M. Association of pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH) shares genetic and cytokine profiles with other autoinflammatory diseases. Medicine (Baltimore). 2014;93:e187.CrossRefGoogle Scholar
  5. 5.
    Marzano AV, Trevisan V, Gattorno M, Ceccherini I, De Simone C, Crosti C. Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene. JAMA Dermatol. 2013;149:762–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Navarini AA, Satoh TK, French LE. Neutrophilic dermatoses and autoinflammatory diseases with skin involvement--innate immune disorders. Semin Immunopathol. 2016;38:45–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Wallach D. Les dermatoses neutrophiliques. (Editorial). Presse Med. 1991;20:105–7.PubMedGoogle Scholar
  8. 8.
    Prat L, Bouaziz JD, Wallach D, Vignon-Pennamen MD, Bagot M. Neutrophilic dermatoses as systemic diseases. Clin Dermatol. 2014;32:376–88.CrossRefPubMedGoogle Scholar
  9. 9.
    Marzano AV, Borghi A, Meroni PL, Cugno M. Pyoderma gangrenosum and its syndromic forms: evidence for a link with autoinflammation. Br J Dermatol. 2016;175:882–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720–32.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Saïd-Sadier N, Ojcius DM. Alarmins, inflammasomes and immunity. Biomed J. 2012;35:437–49.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481:278–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41:1203–17.PubMedCrossRefGoogle Scholar
  15. 15.
    Marzano AV, Cugno M, Trevisan V, Fanoni D, Venegoni L, Berti E, et al. Role of inflammatory cells, cytokines and matrix metalloproteinases in neutrophil-mediated skin diseases. Clin Exp Immunol. 2010;162:100–7.CrossRefGoogle Scholar
  16. 16.
    Marzano AV, Fanoni D, Antiga E, Quaglino P, Caproni M, Crosti C, Meroni PL, Cugno M. Expression of cytokines, chemokines and other effector molecules in two prototypic autoinflammatory skin diseases, pyoderma gangrenosum and Sweet’s syndrome. Clin Exp Immunol. 2014;178:48–56.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mankan AK, Dau T, Jenne D, et al. The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol. 2012;42:710–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen KW, Gross CJ, Sotomayor FV, et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 2014;8:570–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Guma M, Ronacher L, Liu-Bryan R, et al. Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 2009;60:3642–50.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mitroulis I, Kourtzelis I, Kambas K, et al. Regulation of the autophagic machinery in human neutrophils. Eur J Immunol. 2010;40:1461–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Lima AL, Karl I, Giner T, Poppe H, Schmidt M, Presser D, Goebeler M, Bauer B. Keratinocytes and neutrophils are important sources of proinflammatory molecules in hidradenitis suppurativa. Br J Dermatol. 2016;174:514–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Isailovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 2015;60:1–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Donetti E, Cornaghi L, Gualerzi A, Baruffaldi Preis FW, Prignano F. An innovative threedimensional model of normal human skin to study the proinflammatory psoriatic effects of tumor necrosis factor-alpha and interleukin-17. Cytokine. 2014;68:1–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Caproni M, Antiga E, Volpi W, Verdelli A, Venegoni L, Quaglino P, et al. The Treg/Th17 cell ratio is reduced in the skin lesions of patients with pyoderma gangrenosum. Br J Dermatol. 2015;73:275–8.CrossRefGoogle Scholar
  25. 25.
    Foster AM, Baliwag J, Chen CS, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 2014;192:6053–61.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Agarwal S, Misra R, Aggarwal A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J Rheumatol. 2008;35:515–9.PubMedGoogle Scholar
  27. 27.
    Lindor NM, Arsenault TM, Solomon H, et al. A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum and acne: PAPA syndrome. Mayo Clin Proc. 1997;72:611–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Naik HB, Cowen EW. Autoinflammatory pustular neutrophilic diseases. Dermatol Clin. 2013;31:405–25.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tallon B, Corkill M. Peculiarities of PAPA syndrome. Rheumatology. 2006;45:1140–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Smith EJ, Allantaz F, Bennett L, et al. Clinical, molecular, and genetic characteristics of PAPA syndrome: a review. Curr Genomics. 2010;11:519–27.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Callen JP. Pyoderma gangrenosum. Lancet. 1996;351:581–5.CrossRefGoogle Scholar
  32. 32.
    Kistowska M, Gehrke S, Jankovic D, et al. IL-1β drives inflammatory responses to Propionibacterium acnes in vitro and in vivo. J Invest Dermatol. 2014;134:677–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Qin M, Pirouz A, Kim MH, et al. Propionibacterium acnes induces IL-1β secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol. 2014;134:381–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Li ZJ, Choi DK, Sohn KC, et al. Propionibacterium acnes activates the NLRP3 inflammasome in human sebocytes. J Invest Dermatol. 2014;134:2747–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Cortis E, De Benedetti F, Insalaco A, et al. Abnormal production of the tumour necrosis factor alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome. J Pediatr. 2004;145:851–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Demidowich AP, Freeman AF, Kuhns DB, et al. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis Rheum. 2012;64:2022–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Shoham NG, Centola M, Mansfield E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100:13501–6.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell. 2007;129:761–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Henne WM, Kent HM, Ford MG, Hegde BG, Daumke O, Butler PJ, Mittal R, Langen R, Evans PR, McMahon HT. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure. 2007;15:839–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Marcos T, Ruiz-Martín V, de la Puerta ML, Trinidad AG, Rodríguez Mdel C, de la Fuente MA, Sánchez Crespo M, Alonso A, Bayón Y. Proline-serine-threonine phosphatase interacting protein 1 inhibition of T-cell receptor signaling depends on its SH3 domain. FEBS J. 2014;281:3844–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Cote JF, Chung PL, Theberge JF, Halle M, Spencer S, Lasky LA, Tremblay ML. PSTPIP is a substrate of PTP-PEST and serves as a scaffold guiding PTP-PEST toward a specific dephosphorylation of WASP. J Biol Chem. 2002;277:2973–86.PubMedCrossRefGoogle Scholar
  42. 42.
    Badour K, Zhang J, Shi F, McGavin MK, Rampersad V, Hardy LA, Field D, Siminovitch KA. The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity. 2003;18:141–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu Y, Spencer SD, Lasky LA. Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J Biol Chem. 1998;273:5765–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Cong F, Spencer S, Cote JF, Wu Y, Tremblay ML, Lasky LA, Goff SP. Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol Cell. 2000;6:1413–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Li J, Nishizawa K, An W, Hussey RE, Lialios FE, Salgia R, Sunder-Plassmann R, Reinherz EL. A cdc15-like adaptor protein (CD2BP1) interacts with the CD2 cytoplasmic domain and regulates CD2-triggered adhesion. EMBO J. 1998;17:7320–36.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lindwall E, Singla S, Davis WE, Quinet RJ. Novel PSTPIP1 gene mutation in a patient with pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome. Semin Arthritis Rheum. 2015;45:91–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Yeon HB, Lindor HM, Seidman JG, Seidman CE. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome maps to chromosome 15q. Am J Hum Genet. 2000;66:1443–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang D, Höing S, Patterson HC, et al. Inflammation in mice ectopically expressing human pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome-associated PSTPIP1 A230T mutant proteins. J Biol Chem. 2013;288:4594–601.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dovas A, Gevrey J-C, Grossi A, et al. Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. J Cell Sci. 2009;122:3873–82.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Monypenny J, Chou H-C, Banon-Rodriguez I, et al. Role of WASP in cell polarity and podosome dynamics of myeloid cells. Eur J Cell Biol. 2011;90:198–204.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gawden-Bone C, Zhou Z, King E, et al. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J Cell Sci. 2010;123:1427–37.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Starnes TW, Bennin DA, Bing X, et al. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood. 2014;123:2703–14.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Marzano AV, Ishak RS, Saibeni S, et al. Autoinflammatory skin disorders in inflammatory bowel diseases, pyoderma gangrenosum and Sweet’s syndrome: a comprehensive review and disease classification criteria. Clin Rev Allergy Immunol. 2013;45:202–10.CrossRefPubMedGoogle Scholar
  54. 54.
    Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol. 2013;147:155–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Wollina U, Haroske G. Pyoderma gangrenosum. Curr Opin Rheumatol. 2011;23:50–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Dessinioti C, Katsambas A, Antoniou C. Hidradenitis suppurativa (acne inversa) as a systemic disease. Clin Dermatol. 2014;32:397–408.PubMedCrossRefGoogle Scholar
  57. 57.
    Jemec GB. Clinical practice. Hidradenitis suppurativa. N Engl J Med. 2012;366:158–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Duchatelet S, Miskinyte S, Join-Lambert O, Ungeheuer MN, Francès C, Nassif A, et al. First nicastrin mutation in PASH (pyoderma gangrenosum, acne and suppurative hidradenitis) syndrome. Br J Dermatol. 2015;173:610–2.PubMedCrossRefGoogle Scholar
  59. 59.
    Calderón-Castrat X, Bancalari-Diaz D, Román-Curto C, Romo-Melgar A, Amorós-Cerdán D, Alcaraz-Mas L, et al. PSTPIP1 Gene mutation in a pyoderma gangrenosum, acne and suppurative hidradenitis (PASH) syndrome. Br J Dermatol. 2016;175:194–8.PubMedCrossRefGoogle Scholar
  60. 60.
    André MF, Aumaître O, Grateau G, Chamaillard M, Costedoat-Chalumeau N, Cardoso MC, et al. Longest form of CCTG microsatellite repeat in the promoter of the CD2BP1/PSTPIP1 gene is associated with aseptic abscesses and with Crohn disease in French patients. Dig Dis Sci. 2010;55:1681–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet. 2002;359:1661–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Pink AE, Simpson MA, Desai N, Trembath RC, Barker JN. γ-Secretase mutations in hidradenitis suppurativa: new insights into disease pathogenesis. J Invest Dermatol. 2012;133:601–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Wehrli P, Viard L, Bullani R, Tschopp J, French LE. Death receptors in cutaneous biology and disease. J Invest Dermatol. 2000;115:141–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Danese S, Sans M, Fiocchi C. The CD40/CD40L costimulatory pathway in inflammatory bowel disease. Gut. 2004;53:1035–43.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kahn MF, Khan MA. The SAPHO syndrome. Baillieres Clin Rheumatol. 1994;8:333–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Nguyen MT, Borchers A, Selmi C, et al. The SAPHO syndrome. Semin Arthritis Rheum. 2012;42:254–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Carneiro S, Sampaio-Barros PD. SAPHO syndrome. Rheum Dis Clin N Am. 2013;39:401–18.CrossRefGoogle Scholar
  68. 68.
    Kundu BK, Naik AK, Bhargava S, Srivastava D. Diagnosing the SAPHO syndrome: a report of three cases and review of literature. Clin Rheumatol. 2013;32:1237–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Colina M, Govoni M, Orzincolo C, Trotta F. Clinical and radiologic evolution of synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome: a single center study of a cohort of 71 subjects. Arthritis Rheum. 2009;61:813–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Richette P, Molto A, Viguier M, et al. Hidradenitis suppurativa associated with spondyloarthritis – results from a multicentre national prospective study. J Rheumatol. 2014;41:490–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Claudepierre P, Clerc D, Cariou D, et al. SAPHO syndrome and pyoderma gangrenosum: is it fortuitous? J Rheumatol. 1996;23:400–2.PubMedGoogle Scholar
  72. 72.
    Naves JE, Cabré E, Mañosa M, et al. A systematic review of SAPHO syndrome and inflammatory bowel disease association. Dig Dis Sci. 2013;58:2138–47.PubMedCrossRefGoogle Scholar
  73. 73.
    Rukavina I. SAPHO syndrome: a review. J Child Orthop. 2015;9:19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Assmann G, Simon P. The SAPHO syndrome – are microbes involved? Best Pract Res Clin Rheumatol. 2011;25:423–34.PubMedCrossRefGoogle Scholar
  75. 75.
    Hurtado-Nedelec M, Chollet-Martin S, Nicaise-Roland P, et al. Characterization of the immune response in the synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome. Rheumatology (Oxford). 2008;47:1160–7.CrossRefGoogle Scholar
  76. 76.
    Hofmann SR, Morbach H, Schwarz T, Rosen-Wolff A, Girschick HJ, Hedrich CM. Attenuated TLR4/MAPK signaling in monocytes from patients with CRMO results in impaired IL-10 expression. Clin Immunol. 2012;145:69–76.PubMedCrossRefGoogle Scholar
  77. 77.
    Lopalco G, Cantarini L, Vitale A, et al. Interleukin-1 as a common denominator from autoinflammatory to autoimmune disorders: premises, perils, and perspectives. Mediat Inflamm. 2015;2015:194864.CrossRefGoogle Scholar
  78. 78.
    Killeen ME, Ferris L, Kupetsky EA, et al. Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. J Immunol. 2013;190:4324–36.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Firinu D, Barca MP, Lorrai MM, et al. TH17 cells are increased in the peripheral blood of patients with SAPHO syndrome. Autoimmunity. 2014;47:389–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Golla A, Jansson A, Ramser J, et al. Chronic recurrent multifocal osteomyelitis (CRMO): evidence for a susceptibility gene located on chromosome 18q21.3–18q22. Eur J Hum Genet. 2002;10:217–21.PubMedCrossRefGoogle Scholar
  81. 81.
    Hurtado-Nedelec M, Chollet-Martin S, Chapeton D, et al. Genetic susceptibility factors in a cohort of 38 patients with SAPHO syndrome: a study of PSTPIP2, NOD2, and LPIN2 genes. J Rheumatol. 2010;37:401–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Burgemeister LT, Baeten DL, Tas SW. Biologics for rare inflammatory diseases: TNF blockade in the SA PHO syndrome. Neth J Med. 2012;70:444–9.PubMedGoogle Scholar
  83. 83.
    Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65:223–44.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Assmann G, Wagner AD, Monika M, Pfoehler C, Pfreundschuh M, Tilgen W, et al. Single-nucleotide polymorphisms p53 G72C and Mdm2 T309G in patients with psoriasis, psoriatic arthritis, and SAPHO syndrome. Rheumatol Int. 2010;30:1273–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Assmann G, Kueck O, Kirchhoff T, Rosenthal H, Voswinkel J, Pfreundschuh M, et al. Efficacy of antibiotic therapy for SAPHO syndrome is lost after its discontinuation: an interventional study. Arthritis Res Ther. 2009;11:R140.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Govoni M, Colina M, Massara A, Trotta F. SAPHO syndrome and infections. Autoimmun Rev. 2009;8:256–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Girschick HJ, Huppertz HI, Harmsen D, Krauspe R, Müller-Hermelink HK, Papadopoulos T. Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. Hum Pathol. 1999;30:59–65.PubMedCrossRefGoogle Scholar
  88. 88.
    Job-Deslandre C, Krebs S, Kahan A. Chronic recurrent multifocal osteomyelitis: five-year outcomes in 14 pediatric cases. Joint Bone Spine. 2001;68:245–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Bruzzese V. Pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and axial spondyloarthritis: efficacy of anti-tumor necrosis factor α therapy. J Clin Rheumatol. 2012;18:413–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Garzorz N, Papanagiotou V, Atenhan A, Andres C, Eyerich S, Eyerich K, et al. Pyoderma gangrenosum, acne, psoriasis, arthritis and suppurative hidradenitis (PAPASH)-syndrome: a new entity within the spectrum of autoinflammatory syndromes? J Eur Acad Dermatol Venereol. 2016;30:141–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Saraceno R, Babino G, Chiricozzi A, Zangrilli A, Chimenti S. PsAPASH: a new syndrome associated with hidradenitis suppurativa with response to tumor necrosis factor inhibition. J Am Acad Dermatol. 2015;72:e42–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Stichweh DS, Punaro M, Pascual V. Dramatic improvement of pyoderma gangrenosum with infliximab in a patient with PAPA syndrome. Pediatr Dermatol. 2005;22:262–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Tofteland ND, Shaver TS. Clinical efficacy of etanercept for treatment of PAPA syndrome. J Clin Rheumatol. 2010;16:244–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee H, Park SH, Kim SK, Choe JY, Park JS. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome (PAPA syndrome) with E250K mutation in CD2BP1 gene treated with the tumor necrosis factor inhibitor adalimumab. Clin Exp Rheumatol. 2012;30:452.PubMedGoogle Scholar
  95. 95.
    Brenner M, Ruzicka T, Plewig G, Thomas P, Herzer P. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol. 2009;161:1199–201.PubMedCrossRefGoogle Scholar
  96. 96.
    Dierselhuis MP, Frenkel J, Wulffraat NM, Boelens JJ. Anakinra for flares of pyogenic arthritis in PAPA syndrome. Rheumatology (Oxford). 2005;44:406–8.CrossRefGoogle Scholar
  97. 97.
    Staub J, Pfannschmidt N, Strohal R, Braun-Falco M, Lohse P, Goerdt S, et al. Successful treatment of PASH syndrome with infliximab, cyclosporine and dapsone. J Eur Acad Dermatol Venereol. 2015;29:2243–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Scheinfeld N. Diseases associated with hidradenitis suppurativa: part 2 of a series on hidradenitis. Dermatol Online J. 2013;19:18558.PubMedGoogle Scholar
  99. 99.
    Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25:469–84.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jung J, Molinger M, Kohn D, et al. Intra-articular glucocorticosteroid injection into sternocostoclavicular joints in patients with SAPHO syndrome. Semin Arthritis Rheum. 2012;42:266–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Hayama K, Inadomi T, Fujisawa D, Terui T. A pilot study of medium-dose cyclosporine for the treatment of palmoplantar pustulosis complicated with pustulotic arthro-osteitis. Eur J Dermatol. 2010;20:758–62.PubMedGoogle Scholar
  102. 102.
    Amital H, Applbaum YH, Aamar S, et al. SAPHO syndrome treated with pamidronate: an open-label study of 10 patients. Rheumatology (Oxford). 2004;43:658–61.CrossRefGoogle Scholar
  103. 103.
    Firinu D, Murgia G, Lorrai MM, Barca MP, Peralta MM, Manconi PE, et al. Biological treatments for SAPHO syndrome: an update. Inflamm Allergy Drug Targets. 2014;13:199–205.PubMedCrossRefGoogle Scholar
  104. 104.
    Olivieri I, Padula A, Ciancio G, Salvarani C, Niccoli L, Cantini F. Successful treatment of SAPHO syndrome with infliximab: report of two cases. Ann Rheum Dis. 2002;61:375–6.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wagner AD, Andresen J, Jendro MC, Hulsemann JL, Zeidler H. Sustained response to tumor necrosis factor alpha-blocking agents in two patients with SAPHO syndrome. Arthritis Rheum. 2002;46:1965–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Wendling D, Prati C, Aubin F. Anakinra treatment of SAPHO syndrome: short-term results of an open study. Ann Rheum Dis. 2012;71:1098–100.PubMedCrossRefGoogle Scholar
  107. 107.
    Colina M, Pizzirani C, Khodeir M, Falzoni S, Bruschi M, Trotta F, et al. Dysregulation of P2X7 receptor-inflammasome axis in SAPHO syndrome: successful treatment with anakinra. Rheumatology (Oxford). 2010;49:1416–8.CrossRefGoogle Scholar
  108. 108.
    Newman B, Cescon D, Domenchini A, et al. CD2BP1 and CARD15 mutations are not associated with pyoderma gangrenosum in patients with inflammatory bowel disease. J Invest Dermatol. 2004;122:1054–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Nesterovitch AB, Hoffman MD, Simon M, et al. Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum. Clin Exp Dermatol. 2011;36:889–95.PubMedCrossRefGoogle Scholar
  110. 110.
    Guenova E, Teske A, Fehrenbacher B, et al. Interleukin 23 expression in pyoderma gangrenosum and targeted therapy with ustekinumab. Arch Dermatol. 2011;147:1203–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Hamel J, Paul D, Gahr M, Hedrich CM. Pilot study: possible association of IL10 promoter polymorphisms with CRMO. Rheumatol Int. 2012;32:555–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Angelo Valerio Marzano
    • 1
  • Alessandro Borghi
    • 2
  • Massimo Cugno
    • 3
  1. 1.Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniversità degli Studi di Milano, Unità Operativa di Dermatologia, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Dipartimento di Scienze Mediche, Sezione di Dermatologia e Malattie InfettiveUniversità degli Studi di FerraraFerraraItaly
  3. 3.Medicina Interna, Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniversità degli Studi di Milano, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore PoliclinicoMilanItaly

Personalised recommendations