Statistical Characteristics of the Distraction Parameters in the Unbounded Anisotropic Plane Weakened by Multiple Random Cracks

  • L. A. Filshtinskii
  • D. M. Nosov
  • Yu. V. Shramko
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

The boundary value problem of the theory of elasticity for a finite anisotropic plate with random cracks has been solved. Stress intensity factors and energy flows near the tips of cracks are determined as a linear functional on solutions to a system of singular integral equations. It is shown, that in case of the normal distribution of the cracks, the statistical characteristics (mathematical expectations and dispersions) of the distraction (stress intensity factors and energy flows) have also the normal law distribution.

Keywords

Anisotropy Multiple cracks Singular integral equations Stress intensity factors 

Mathematics Subject Classification (2010)

Primary 74R74; Secondary 74B74 

References

  1. 1.
    E.I. Grigolyuk, L.A. Filshtinsky, Regular Piece-Homogeneous Structures with Defects (Fiziko-Matematicheskaja Literatura, Moscow, 1994); (In Russian)Google Scholar
  2. 2.
    M. Denda, Mixed mode I, II and III analysis of multiple cracks in plane anisotropic solids by the BEM: a dislokation and point force approach. Eng. Anal. Bound. Elem. 25, 267–278 (2001)MATHGoogle Scholar
  3. 3.
    T. Ikeda, M. Nagai, K. Yamanaga, N. Miyazaki, Stress intensity factor analyses of interface cracks between dissimilar anisotropic materials using the finite element method. Eng. Fract. Mech. 73, 2067–2079 (2006)CrossRefGoogle Scholar
  4. 4.
    E. Rejwer, L. Rybarska-Rusinek, A. Linkov, The complex variable fast multipole boundary element method for the analysis of strongly inhomogeneous media. Eng. Anal. Bound. Elem. 43, 105–116 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J. Wang, S.L. Crouch, S.G. Mogilevskaya, A fast and accurate algorithm for a Galerkin boundary integral method. Comput. Mech. 37, 96–109 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M.D. Snyder, T.A. Cruse, Boundary-integral equation analysis of cracked anisotropic plates. Int. J. Fract. 11, 315–328 (1975)CrossRefGoogle Scholar
  7. 7.
    S.G. Lekhnitskii, Anisotropic Plates, vol. 355 (Gordon and Breach Science Publishers, New York, 1968)Google Scholar
  8. 8.
    L.A. Filshtinskii, Elastic equilibrium of anisotropic medium, weakened bu random curveliniar cracks. Limiting process to isotropic medium. Izv. ANSSSR: Mech. Tw. Tela 5, 91–97 (1976)MathSciNetGoogle Scholar
  9. 9.
    N.I. Muskhelishvili, Singular Integral Equations, 3rd edn. (Nauka, Moscow, 1968); (in Russian) English transl. of the 1st ed.: P. Noordhoff N.V., Groningen, 1946Google Scholar
  10. 10.
    G.P. Cherepanov, Mechanics of Brittle Distruction (Nauka, Moscow, 1974), p. 640Google Scholar
  11. 11.
    V.V. Panasyuk, M.P. Savruk, A.P. Dacyshan, Stress Distribution at the Neighbourhood of the Cracksin Plates and Shells, vol. 444 (Naukova Dumka, Kyiv, 1976)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. A. Filshtinskii
    • 1
  • D. M. Nosov
    • 2
  • Yu. V. Shramko
    • 1
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Pedagogical University of CracowCracowPoland

Personalised recommendations