Viscoelastic Behavior of Periodontal Ligament: Stresses Relaxation at Translational Displacement of a Tooth Root

Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

Understanding of viscoelastic response of a periodontal membrane under the action of short-term and long-term loadings is important for many orthodontic problems. A new analytic model describing behavior of the viscoelastic periodontal ligament after the tooth root translational displacement based on Maxwell approach is suggested. In the model, a tooth root and alveolar bone are assumed to be a rigid bodies. The system of differential equations for the plane-strain state of the viscoelastic periodontal ligament is used as the governing one. The boundary conditions corresponding to the initial small displacement of the root and fixed outer surface of the periodontal ligament in the dental alveolus are utilized. A solution is found numerically for fractional viscoelasticity model assuming that the stress relaxation in the periodontal ligament after the continuing displacement of the tooth root occurs approximately within five hours. The character of stress distribution in the ligament over time caused by the tooth root translational displacement is evaluated. Effect of Poisson’s ratio on the stresses in the viscoelastic periodontal ligament is considered. The obtained results can be used for simulation of the bone remodelling process during orthodontic treatment and for assessment of optimal conditions of the orthodontic load application.

Keywords

Viscoelastic periodontal ligament Translational displacement Root of the tooth Stress relaxation 

Mathematics Subject Classification (2010)

74L15 35Q92 45E10 

Notes

Acknowledgements

This paper is the result of project implementation: TAMER “Trans-Atlantic Micromechanics Evolving Research: Materials containing inhomogeneities of diverse physical properties, shapes and orientations” supported by FP7-PEOPLE-2013-IRSES Marie Curie Action “International Research Staff Exchange Scheme”. It is also supported by Belarusian Fund for Fundamental Scientific Research (grant F17MS-002).

References

  1. 1.
    T.S. Fill, J.P. Carey, R.W. Toogood, P.W. Major, Experimentally determined mechanical properties of, and models for, the periodontal ligament: critical review of current literature. J. Dent. Biomech. (2011). https://doi.org/10.4061/2011/312980 Google Scholar
  2. 2.
    A.N. Natali, A.R. Ten Cate, Dental Biomechanics (Taylor and Francis, London, 2003)CrossRefGoogle Scholar
  3. 3.
    C. Dorow, F.G. Sander, Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J. Orofac. Orthop. 66, 208–218 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Drolshagen, L. Keilig, I. Hasan, S. Reimann, J. Deschner, K.T. Brinkmann, R. Krause, M. Favino, C. Bourauel, Development of a novel intraoral measurement device to determine the biomechanical characteristics of the human periodontal ligament. J. Biomech. 44, 2136–2143 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Groning, M.J. Fagan, P. O’Higins, The effects of the periodontal ligament on mandibular stiffness: a study combining finite element analysis and geometric morphometrics. J. Biomech. 44, 1304–1312 (2011)CrossRefGoogle Scholar
  6. 6.
    W.R. Proffit, H.W. Fields, D.M. Sarver, Contemporary Orthodontics (Mosby, St. Louis, 2012)Google Scholar
  7. 7.
    W.D. Van Driel, E.J. Van Leewen, J.W. Von den Hoff, J.C. Maltha, A.M. Kuijpers-Jagtman, Time-dependent mechanical behavior of the periodontal ligament. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 214, 407–504 (2000)Google Scholar
  8. 8.
    C.J. Burstone, R.J. Pryputniewicz, W.W. Bowley, Holographic measurement of tooth mobility in three dimensions. J. Periodontal Res. 13, 283–294 (1978)CrossRefGoogle Scholar
  9. 9.
    K. Komatsu, Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. J. Dent. Biomech. (2010). https://doi.org/10.4061/2010/502318 Google Scholar
  10. 10.
    J. Middleton, M. Jones, A. Wilson, The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am. J. Orthod. Dentofac. Orthop. 109, 155–162 (1996)CrossRefGoogle Scholar
  11. 11.
    D.C.A. Picton, Tooth mobility – an update. Eur. J. Orthod. 12, 109–115 (1990)CrossRefGoogle Scholar
  12. 12.
    L. Qian, M. Todo, Y. Morita, Y. Matsushita, K. Koyano, Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent. Mater. 25, 1285–1292 (2009)CrossRefGoogle Scholar
  13. 13.
    S.R. Toms, G.J. Dakin, J.E. Lemons, A.W. Eberhardt, Quasi-linear viscoelastic behavior of the human periodontal ligament. J. Biomech. 35, 1411–1415 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Bosiakov, G. Mikhasev, Mathematical model for analysis of translational displacements of tooth root. Math. Model. Anal. 20, 490–501 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C.G. Provatidis, An analytical model for stress analysis of a tooth in translation. Int. J. Eng. Sci. 39, 1361–1381 (2001)CrossRefGoogle Scholar
  16. 16.
    A. Van Schepdael, L. Geris, J. Van der Sloten, Analytical determination of stress patterns in the periodontal ligament during orthodontic tooth movement. Med. Eng. Phys. 35, 403–410 (2013)CrossRefGoogle Scholar
  17. 17.
    V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Applications, vol. II (Springer/Higher Education Press, Berlin/Beijing, 2013)Google Scholar
  18. 18.
    P. Drygaś, Functional-differential equations in a class of analytic functions and its application to elastic composites. Compl. Var. Ellipt. Equat. 61, 1145–1156 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A.N. Natali, P.G. Pavan, C. Venturato, K. Komatsu, Constitutive modeling of the non-linear visco-elasticity of the periodontal ligament. Comput. Methods Prog. Biomed. 104, 193–198 (2011)CrossRefGoogle Scholar
  20. 20.
    N. Slomka, A.D. Vardimon, A. Gefen, R. Pilo, C. Bourauel, T. Brosh, Time-related PDL: viscoelastic response during initial orthodontic tooth movement of a tooth with functioning interproximal contact – a mathematical model. J. Biomech. 41, 1871–1877 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Bosiakov, A. Koroleva, S. Rogosin, V. Silberschmidt, Viscoelasticity of periodontal ligament: an analytical model. Mech. Adv. Mater. Mod. Proc. 1(7) (2015). https://doi.org/10.1186/s40759-015-0007-0
  22. 22.
    A. Hohmann, C. Kober, P. Young, C. Dorow, M. Geiger, A. Boryor, F.M. Sander, C. Sander, F.G. Sander, Influence of different modeling strategies for the periodontal ligament on finite element simulation results. Am. J. Orthod. Dentofac. Orthop. 139, 775–783 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Kawarizadeh, C. Bourauel, A. Jager, Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur. J. Orthod. 25, 569–578 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Poppe, C. Bourauel, A. Jager, Determination of the material properties of the human periodontal ligament and the position of the centers of resistance in single-rooted teeth. J. Orofac. Orthop. 64, 358–370 (2002)CrossRefGoogle Scholar
  25. 25.
    J.S. Rees, P.H. Jacobsen, Elastic modulus of the periodontal ligament. Biomaterials 18, 995–999 (1997)CrossRefGoogle Scholar
  26. 26.
    K. Tanne, T. Nagataki, Y. Inoue, M. Sakuda, C.J. Burstone, Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights. Am. J. Orthod. Dentofac. Orthop. 100, 66–71 (1991)CrossRefGoogle Scholar
  27. 27.
    K. Tanne, M. Sakuda, C.J. Burstone, Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 92, 499–505 (1987)CrossRefGoogle Scholar
  28. 28.
    R.F. Viecilli, Th.R. Katona, J. Chen, J.K. (Jr.) Hartsfield, W.E. Roberts, Three-dimensional mechanical environment of orthodontic tooth movement and root resorption. Am. J. Orthod. Dentofac. Orthop. 133, 791.e11–791.e26 (2008)Google Scholar
  29. 29.
    S.A. Wood, D.C. Strait, E.R. Dumont, C.F. Ross, I.R. Grosse, The effects of modeling simplifications on craniofacial finite element models: the alveoli (tooth sockets) and periodontal ligaments. J. Biomech. 44, 1831–1838 (2011)CrossRefGoogle Scholar
  30. 30.
    Yu.A. Rossikhin, M.V. Shitikova, Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Frac. Calc. Appl. Anal. 10, 111–121 (2007)MathSciNetMATHGoogle Scholar
  31. 31.
    Yu. A. Rossikhin, M. V. Shitikova, Two approaches for studying the impact response of viscoelastic engineering systems: an overview. Comp. Math. Appl. 66, 755–773 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Yu.N. Rabotnov, Equilibrium of an elastic medium with after-effect. J. Appl. Math. Mech. 12, 53–62 (1948)MathSciNetGoogle Scholar
  33. 33.
    Yu.N. Rabotnov, Elements of Hereditary Solid Mechanics (Mir Publishers, Moscow, 1980)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations