Materials, Devices and Gadgets for Hernia Surgery

  • David L. SandersEmail author
  • Kelly-Anne Ide
  • Bassem Amr


The use of prosthetics in hernia surgery is a well-established practice throughout the world, with over 95% of all inguinal and ventral hernias repairs in the USA and Europe using a prosthetic material or device. The use of a mesh significantly reduces the incidence of hernia recurrence, but there are, unfortunately, limitations to the use of prostheses including cost and resource availability in the developing world.

Given the multiple variables in hernia surgery, it is unsurprising that there is such a large range of meshes available on the commercial market. From metal prostheses in the early 1900s, technology has advanced in leaps and bounds with the newest meshes employing hybrid structures of both absorbable and non-absorbable materials. Manufacturers have developed numerous products in an attempt to design the ‘perfect mesh’—a product that is biocompatible, resistant to infection, easy to handle, economical to manufacture and long-lasting.

This chapter will discuss the various mesh materials available, as well as different fixation techniques used in hernia surgery.


  1. 1.
    Bay-Nielsen M, Kehlet H, Strand L, Malmstrom J, Andersen FH, Wara P, et al. Quality assessment of 26,304 herniorrhaphies in Denmark: a prospective nationwide study. Lancet. 2001;358(9288):1124–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Rutkow IM. Demographic and socioeconomic aspects of hernia repair in the United States in 2003. Surg Clin North Am. 2003;83(5):1045–51. v-vi.PubMedCrossRefGoogle Scholar
  3. 3.
    Bisgaard T, Bay-Nielsen M, Kehlet H. Re-recurrence after operation for recurrent inguinal hernia. A nationwide 8-year follow-up study on the role of type of repair. Ann Surg. 2008;247(4):707–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Bay-Nielsen M, Kehlet H, Strand L, Malmstrom J, Andersen FH, Wara P, et al. The Danish Hernia Database—four years’ results. Ugeskr Laeger. 2004;166(20):1894–8.PubMedGoogle Scholar
  5. 5.
    Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J. Long-term follow up of a randomized control trial of suture versus mesh repair of incisional hernia. Ann Surg. 2004;240(4):578–85.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Shankaran V, Weber DJ, Reed RL II, Luchette FA. A review of available prosthetics for ventral hernia repair. Ann Surg. 2011;253(1):16–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Goepel R. Uber die Verschliessung von Bruchpforten durch Einheilung geflochtener fertiger Silberdrahtnetze. Zentralbl Chir. 1900;17:3.Google Scholar
  8. 8.
    Perry. Implantations of Silver Filigree for cure of large ventral hernia; report of two cases. Boston Med Surg J. 1904;151:2.CrossRefGoogle Scholar
  9. 9.
    Witzel O. Uber den Verschluss van Bauchwunden und Bruchpforten durch versenkte Silberdrahtnetze. Zetralbl Chir. 1900;27:3.Google Scholar
  10. 10.
    Phelps A. A new operation for hernia. N Y Med J. 1894;60.Google Scholar
  11. 11.
    Douglas DM. Repair of large herniae with tantalum gauze an experimental and clinical study. Lancet. 1948;1(6512):936–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Throckmorton TD. Tantalum gauze in the repair of hernias complicated by tissue deficiency; a preliminary report. Surgery. 1948;23(1):32–46.PubMedGoogle Scholar
  13. 13.
    Koontz AR, Kimberly RC. Tantalum and marlex mesh (with a note on marlex thread):an experimental and clinical comparison—preliminary report. Ann Surg. 1960;151:796–804.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Preston DJ, Richards CF. Use of wire mesh prostheses in the treatment of hernia. 24 years’ experience. Surg Clin North Am. 1973;53(3):549–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Mathieson AJ, James JH. A review of inguinal hernia repair using stainless steel mesh. J R Coll Surg Edinb. 1975;20(1):58–62.PubMedGoogle Scholar
  16. 16.
    Thomeret G, Dubost C, Pillot P. The use of inoxydizable steel gauze in the treatment of eventrations of hernias. Mem Acad Chir (Paris). 1960;86:500–7.Google Scholar
  17. 17.
    Cumberland VH. A preliminary report on the use of prefabricated nylon weave in the repair of ventral hernia. Med J Aust. 1952;1(5):143–4.PubMedGoogle Scholar
  18. 18.
    Doran FS, Gibbins RE, Whitehead R. A report on 313 inguinal herniae repaired with nylon nets. Br J Surg. 1961;48:430–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Usher FC, Wallace SA. Tissue reaction to plastics; a comparison of nylon, orlon, dacron, teflon, and marlex. AMA Arch Surg. 1958;76(6):997–9.PubMedCrossRefGoogle Scholar
  20. 20.
    DeBord JR. The historical development of prosthetics in hernia surgery. Surg Clin North Am. 1998;78(6):973–1006. vi.PubMedCrossRefGoogle Scholar
  21. 21.
    Usher FC, Ochsner J, Tuttle LL Jr. Use of marlex mesh in the repair of incisional hernias. Am Surg. 1958;24(12):969–74.Google Scholar
  22. 22.
    Adloff M, Amaud JP. Surgical management of large incisional hernias by an intraperitoneal Mersilene mesh and an aponeurotic graft. Surg Gynecol Obstet. 1987;165(3):204–6.PubMedGoogle Scholar
  23. 23.
    Asarias JR, Nguyen PT, Mings JR, Gehrich AP, Pierce LM. Influence of mesh materials on the expression of mediators involved in wound healing. J Invest Surg. 2011;24(2):87–98.PubMedCrossRefGoogle Scholar
  24. 24.
    Majercik S, Tsikitis V, Iannitti DA. Strength of tissue attachment to mesh after ventral hernia repair with synthetic composite mesh in a porcine model. Surg Endosc. 2006;20(11):1671–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Woloson G. Biochemistry, immunology, and tissue response to prosthetic material. In: Bendavid R, editor. Abdominal wall hernias: principles and management. 1. Berlin: Springer; 2001. p. 201–20.Google Scholar
  26. 26.
    Wagh PV, Leverich AP, Sun CN, White HJ, Read RC. Direct inguinal herniation in men: a disease of collagen. J Surg Res. 1974;17(6):425–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Klinge U, Si ZY, Zheng H, Schumpelick V, Bhardwaj RS, Klosterhalfen B. Abnormal collagen I to III distribution in the skin of patients with incisional hernia. Eur Surg Res. 2000;32(1):43–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Si Z, Bhardwaj R, Rosch R, Mertens PR, Klosterhalfen B, Klinge U. Impaired balance of type I and type III procollagen mRNA in cultured fibroblasts of patients with incisional hernia. Surgery. 2002;131(3):324–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Bellon JM, Bujan J, Honduvilla NG, Jurado F, Gimeno MJ, Turnay J, et al. Study of biochemical substrate and role of metalloproteinases in fascia transversalis from hernial processes. Eur J Clin Invest. 1997;27(6):510–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Bellon JM, Bajo A, Ga-Honduvilla N, Gimeno MJ, Pascual G, Guerrero A, et al. Fibroblasts from the transversalis fascia of young patients with direct inguinal hernias show constitutive MMP-2 overexpression. Ann Surg. 2001;233(2):287–91.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Offner E. Pathophysiology and pathology of the foreign-body reaction. In: Schumpelick LN, editor. Meshes: benefits and risks. 1. Berlin: Springer; 2004. p. 161–9.Google Scholar
  32. 32.
    Kaufmann SH. Immunity to intracellular bacteria. Annu Rev Immunol. 1993;11:129–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V. Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res. 2002;103(2):208–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Laschke MW, Haufel JM, Thorlacius H, Menger MD. New experimental approach to study host tissue response to surgical mesh materials in vivo. J Biomed Mater Res A. 2005;74(4):696–704.PubMedCrossRefGoogle Scholar
  35. 35.
    Bellon JM, Bujan J, Contreras L, Hernando A. Integration of biomaterials implanted into abdominal wall: process of scar formation and macrophage response. Biomaterials. 1995;16(5):381–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Tang L, Lucas AH, Eaton JW. Inflammatory responses to implanted polymeric biomaterials: role of surface-adsorbed immunoglobulin G. J Lab Clin Med. 1993;122(3):292–300.PubMedGoogle Scholar
  37. 37.
    Tang L, Eaton JW. Inflammatory responses to biomaterials. Am J Clin Pathol. 1995;103(4):466–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Tang L, Eaton JW. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med. 1993;178(6):2147–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Pereira-Lucena CG, Artigiani-Neto R, Lopes-Filho GJ, Frazao CV, Goldenberg A, Matos D, et al. Experimental study comparing meshes made of polypropylene, polypropylene + polyglactin and polypropylene + titanium: inflammatory cytokines, histological changes and morphometric analysis of collagen. Hernia. 2010;14(3):299–304.PubMedCrossRefGoogle Scholar
  40. 40.
    Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006;12(7):1955–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Vroman L, Adams AL. Identification of absorbed protein films by exposure to antisera and water vapor. J Biomed Mater Res. 1969;3(4):669–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Hunt JA, Flanagan BF, McLaughlin PJ, Strickland I, Williams DF. Effect of biomaterial surface charge on the inflammatory response: evaluation of cellular infiltration and TNF alpha production. J Biomed Mater Res. 1996;31(1):139–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Iannitti DA, Hope WW, Tsikitis V. Strength of tissue attachment to composite and ePTFE grafts after ventral hernia repair. JSLS. 2007;11(4):415–21.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Welty G, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V. Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia. 2001;5(3):142–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Bellon JM, Rodriguez M, Garcia-Honduvilla N, Gomez-Gil V, Pascual G, Bujan J. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia. J Invest Surg. 2008;21(5):280–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Novitsky YW, Harrell AG, Cristiano JA, Paton BL, Norton HJ, Peindl RD, et al. Comparative evaluation of adhesion formation, strength of ingrowth, and textile properties of prosthetic meshes after long-term intra-abdominal implantation in a rabbit. J Surg Res. 2007;140(1):6–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Harrell AG, Novitsky YW, Cristiano JA, Gersin KS, Norton HJ, Kercher KW, et al. Prospective histologic evaluation of intra-abdominal prosthetics four months after implantation in a rabbit model. Surg Endosc. 2007;21(7):1170–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Vrijland WW, Bonthuis F, Steyerberg EW, Marquet RL, Jeekel J, Bonjer HJ. Peritoneal adhesions to prosthetic materials: choice of mesh for incisional hernia repair. Surg Endosc. 2000;14(10):960–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Conze J, Rosch R, Klinge U, Weiss C, Anurov M, Titkowa S, et al. Polypropylene in the intra-abdominal position: influence of pore size and surface area. Hernia. 2004;8(4):365–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Klinge U, Klosterhalfen B, Muller M, Ottinger AP, Schumpelick V. Shrinking of polypropylene mesh in vivo: an experimental study in dogs. Eur J Surg. 1998;164(12):965–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Gonzalez R, Fugate K, McClusky D III, Ritter EM, Lederman A, Dillehay D, et al. Relationship between tissue ingrowth and mesh contraction. World J Surg. 2005;29(8):1038–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Bellon JM, Garcia-Honduvilla N, Rodriguez M, Pascual G, Gomez-Gil V, Bujan J. Influence of the structure of new generation prostheses on shrinkage after implant in the abdominal wall. J Biomed Mater Res B Appl Biomater. 2006;78((2):340–6.CrossRefGoogle Scholar
  53. 53.
    Klinge U, Klink CD, Klosterhalfen B. The “ideal” mesh—more than a mosquito net. Zentralbl Chir. 2010;135(2):168–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Bringman S, Conze J, Cuccurullo D, Deprest J, Junge K, Klosterhalfen B, et al. Hernia repair: the search for ideal meshes. Hernia. 2010;14(1):81–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hamer-Hodges DW, Scott NB. Surgeon’s workshop. Replacement of an abdominal wall defect using expanded PTFE sheet (Gore-tex). J R Coll Surg Edinb. 1985;30(1):65–7.PubMedGoogle Scholar
  56. 56.
    Schumpelick V, Klinge U. Prosthetic implants for hernia repair. Br J Surg. 2003;90(12):1457–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Doctor HG. Evaluation of various prosthetic materials and newer meshes for hernia repairs. J Minim Access Surg. 2006;2(3):110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sanders DL, Kingsnorth AN. Prosthetic mesh materials used in hernia surgery. Expert Rev Med Devices. 2012;9(2):159–79.PubMedCrossRefGoogle Scholar
  59. 59.
    Bendavid R. Abdominal wall hernias: principles and management. New York: Springer; 2001. xxxiv, 792 p., [16] p. of plates p.Google Scholar
  60. 60.
    Usher FC. Hernia repair with Marlex mesh. An analysis of 541 cases. Arch Surg. 1962;84:325–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Zieren J, Maecker F, Neuss H, Muller JM. Trevira mesh: a promising new implant for the treatment of abdominal hernias. Langenbecks Arch Surg. 2002;387(1):8–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Wantz GE. Incisional hernioplasty with Mersilene. Surg Gynecol Obstet. 1991;172(2):129–37.PubMedGoogle Scholar
  63. 63.
    Riepe G, Loos J, Imig H, Schroder A, Schneider E, Petermann J, et al. Long-term in vivo alterations of polyester vascular grafts in humans. Eur J Vasc Endovasc Surg. 1997;13(6):540–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Morris-Stiff GJ, Hughes LE. The outcomes of nonabsorbable mesh placed within the abdominal cavity: literature review and clinical experience. J Am Coll Surg. 1998;186(3):352–67.CrossRefPubMedGoogle Scholar
  65. 65.
    Harrison JH. A teflon weave for replacing tissue defects. Surg Gynecol Obstet. 1957;104(5):584–90.PubMedGoogle Scholar
  66. 66.
    Gibson LD, Stafford CE. Synthetic mesh repair of abdominal wall defects: follow up and reappraisal. Am Surg. 1964;30:481–6.PubMedGoogle Scholar
  67. 67.
    Elliott MP, Juler GL. Comparison of Marlex mesh and microporous teflon sheets when used for hernia repair in the experimental animal. Am J Surg. 1979;137(3):342–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Murphy JL, Freeman JB, Dionne PG. Comparison of Marlex and Gore-tex to repair abdominal wall defects in the rat. Can J Surg. 1989;32(4):244–7.PubMedGoogle Scholar
  69. 69.
    Sher W, Pollack D, Paulides CA, Matsumoto T. Repair of abdominal wall defects: Gore-Tex vs. Marlex graft. Am Surg. 1980;46(11):618–23.PubMedGoogle Scholar
  70. 70.
    Lamb JP, Vitale T, Kaminski DL. Comparative evaluation of synthetic meshes used for abdominal wall replacement. Surgery. 1983;93(5):643–8.PubMedGoogle Scholar
  71. 71.
    Pans A, Pierard GE. A comparison of intraperitoneal prostheses for the repair of abdominal muscular wall defects in rats. Eur Surg Res. 1992;24(1):54–60.PubMedCrossRefGoogle Scholar
  72. 72.
    Simmermacher RK, van der Lei B, Schakenraad JM, Bleichrodt RP. Improved tissue ingrowth and anchorage of expanded polytetrafluoroethylene by perforation: an experimental study in the rat. Biomaterials. 1991;12(1):22–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Bellon JM, Contreras LA, Sabater C, Bujan J. Pathologic and clinical aspects of repair of large incisional hernias after implant of a polytetrafluoroethylene prosthesis. World J Surg. 1997;21(4):402–6. discussion 6-7.PubMedCrossRefGoogle Scholar
  74. 74.
    Utrera Gonzalez A, de la Portilla de Juan F, Carranza Albarran G. Large incisional hernia repair using intraperitoneal placement of expanded polytetrafluoroethylene. Am J Surg. 1999;177(4):291–3.Google Scholar
  75. 75.
    Schumpelick VE, Nyhus LME. Meshes: benefits and risks. New York: Springer; 2004.Google Scholar
  76. 76.
    van der Lei B, Bleichrodt RP, Simmermacher RK, van Schilfgaarde R. Expanded polytetrafluoroethylene patch for the repair of large abdominal wall defects. Br J Surg. 1989;76(8):803–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Simmermacher RK, Schakenraad JM, Bleichrodt RP. Reherniation after repair of the abdominal wall with expanded polytetrafluoroethylene. J Am Coll Surg. 1994;178(6):613–6.PubMedGoogle Scholar
  78. 78.
    Bellon JM, Bujan J, Contreras LA, Carrera-San Martin A, Jurado F. Comparison of a new type of polytetrafluoroethylene patch (Mycro Mesh) and polypropylene prosthesis (Marlex) for repair of abdominal wall defects. J Am Coll Surg. 1996;183(1):11–8.PubMedGoogle Scholar
  79. 79.
    Bellon JM, Contreras LA, Bujan J, Carrera-San Martin A. The use of biomaterials in the repair of abdominal wall defects: a comparative study between polypropylene meshes (Marlex) and a new polytetrafluoroethylene prosthesis (Dual Mesh). J Biomater Appl. 1997;12(2):121–35.PubMedCrossRefGoogle Scholar
  80. 80.
    Schumpelick V, Fitzgibbons RJ. Hernia repair sequelae. Berlin: Springer; 2010. xiii, 529 p.Google Scholar
  81. 81.
    Amid PK, Shulman AG, Lichtenstein IL, Sostrin S, Young J, Hakakha M. Experimental evaluation of a new composite mesh with the selective property of incorporation to the abdominal wall without adhering to the intestines. J Biomed Mater Res. 1994;28(3):373–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Bellon JM, Bujan J, Contreras LA, Jurado F. Use of nonporous polytetrafluoroethylene prosthesis in combination with polypropylene prosthetic abdominal wall implants in prevention of peritoneal adhesions. J Biomed Mater Res. 1997;38(3):197–202.PubMedCrossRefGoogle Scholar
  83. 83.
    Law NW. A comparison of polypropylene mesh, expanded polytetrafluoroethylene patch and polyglycolic acid mesh for the repair of experimental abdominal wall defects. Acta Chir Scand 1990;156(11-12):759-62.Google Scholar
  84. 84.
    Bleichrodt RP, Simmermacher RK, van der Lei B, Schakenraad JM. Expanded polytetrafluoroethylene patch versus polypropylene mesh for the repair of contaminated defects of the abdominal wall. Surg Gynecol Obstet. 1993;176(1):18–24.PubMedGoogle Scholar
  85. 85.
    Bellon JM, Contreras LA, Bujan J. Ultrastructural alterations of polytetrafluoroethylene prostheses implanted in abdominal wall provoked by infection: clinical and experimental study. World J Surg. 2000;24(5):528–31. discussion 32.PubMedCrossRefGoogle Scholar
  86. 86.
    Bellon JM, G-Honduvilla N, Jurado F, Carranza A, Bujan J. In vitro interaction of bacteria with polypropylene/ePTFE prostheses. Biomaterials. 2001;22(14):2021–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Bellon JM, Garcia-Carranza A, Garcia-Honduvilla N, Carrera-San Martin A, Bujan J. Tissue integration and biomechanical behaviour of contaminated experimental polypropylene and expanded polytetrafluoroethylene implants. Br J Surg. 2004;91(4):489–94.PubMedCrossRefGoogle Scholar
  88. 88.
    Taylor SG, O’Dwyer PJ. Chronic groin sepsis following tension-free inguinal hernioplasty. Br J Surg. 1999;86(4):562–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Leber GE, Garb JL, Alexander AI, Reed WP. Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg. 1998;133(4):378–82.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Harrell AG, Novitsky YW, Kercher KW, Foster M, Burns JM, Kuwada TS, et al. In vitro infectability of prosthetic mesh by methicillin-resistant Staphylococcus aureus. Hernia. 2006;10(2):120–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Melman L, Jenkins ED, Hamilton NA, Bender LC, Brodt MD, Deeken CR, et al. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair. Hernia. 2011;15(4):423–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Voskerician G, Gingras PH, Anderson JM. Macroporous condensed poly(tetrafluoroethylene). I. In vivo inflammatory response and healing characteristics. J Biomed Mater Res A. 2006;76((2):234–42.CrossRefGoogle Scholar
  93. 93.
    Voskerician G, Rodriguez A, Gingras PH. Macroporous condensed poly(tetra fluoro-ethylene). II. In vivo effect on adhesion formation and tissue integration. J Biomed Mater Res A. 2007;82(2):426–35.PubMedCrossRefGoogle Scholar
  94. 94.
    Klinge U, Klosterhalfen B, Muller M, Schumpelick V. Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg. 1999;165(7):665–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Wada A, Kubota H, Hatanaka H, Miura H, Iwamoto Y. Comparison of mechanical properties of polyvinylidene fluoride and polypropylene monofilament sutures used for flexor tendon repair. J Hand Surg Br. 2001;26(3):212–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Hong T, King MW, Michielsen S, Cheung LW, Mary C, Guzman R, et al. Development of in vitro performance tests and evaluation of nonabsorbable monofilament sutures for cardiovascular surgery. ASAIO J. 1998;44(6):776–85.PubMedCrossRefGoogle Scholar
  97. 97.
    Junge K, Binnebosel M, Rosch R, Jansen M, Kammer D, Otto J, et al. Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surg Endosc. 2009;23(2):327–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Conze J, Junge K, Weiss C, Anurov M, Oettinger A, Klinge U, et al. New polymer for intra-abdominal meshes—PVDF copolymer. J Biomed Mater Res B Appl Biomater. 2008;87((2):321–8.CrossRefGoogle Scholar
  99. 99.
    Junge K, Klinge U, Rosch R, Lynen P, Binnebosel M, Conze J, et al. Improved collagen type I/III ratio at the interface of gentamicin-supplemented polyvinylidenfluoride mesh materials. Langenbecks Arch Surg. 2007;392(4):465–71.PubMedCrossRefGoogle Scholar
  100. 100.
    Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V. PVDF as a new polymer for the construction of surgical meshes. Biomaterials. 2002;23(16):3487–93.PubMedCrossRefGoogle Scholar
  101. 101.
    Berger D, Bientzle M. Polyvinylidene fluoride: a suitable mesh material for laparoscopic incisional and parastomal hernia repair! A prospective, observational study with 344 patients. Hernia. 2009;13(2):167–72.PubMedCrossRefGoogle Scholar
  102. 102.
    Berger D. Prevention of parastomal hernias by prophylactic use of a specially designed intraperitoneal onlay mesh (Dynamesh IPST). Hernia. 2008;12(3):243–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Berger D, Bientzle M. Laparoscopic repair of parastomal hernias: a single surgeon's experience in 66 patients. Dis Colon Rectum. 2007;50(10):1668–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Fortelny RH, Petter-Puchner AH, Glaser KS, Offner F, Benesch T, Rohr M. Adverse effects of polyvinylidene fluoride-coated polypropylene mesh used for laparoscopic intraperitoneal onlay repair of incisional hernia. Br J Surg. 2010;97(7):1140–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Brismar B, Pettersson N. Polyglycolic acid (Dexon) mesh graft for abdominal wound support in healing-compromised patients. Acta Chir Scand. 1988;154(9):509–10.PubMedGoogle Scholar
  106. 106.
    Marmon LM, Vinocur CD, Standiford SB, Wagner CW, Dunn JM, Weintraub WH. Evaluation of absorbable polyglycolic acid mesh as a wound support. J Pediatr Surg. 1985;20(6):737–42.PubMedCrossRefGoogle Scholar
  107. 107.
    Devereux DF, Thompson D, Sandhaus L, Sweeney W, Haas A. Protection from radiation enteritis by an absorbable polyglycolic acid mesh sling. Surgery. 1987;101(2):123–9.PubMedGoogle Scholar
  108. 108.
    Tyrell J, Silberman H, Chandrasoma P, Niland J, Shull J. Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet. 1989;168(3):227–32.PubMedGoogle Scholar
  109. 109.
    Rosen MJ, Bauer JJ, Harmaty M, Carbonell AM, Cobb WS, Matthews B, et al. Multicenter, prospective, longitudinal study of the recurrence, surgical site infection, and quality of life after contaminated ventral hernia repair using biosynthetic absorbable mesh: the COBRA Study. Ann Surg. 2015.Google Scholar
  110. 110.
    Bellows CF. Biological tissue graft: present status. In: Schumpelick V, Fitzgibbons RJ, editors. Hernia repair sequelae. Berlin: Springer; 2010. p. 317–22.Google Scholar
  111. 111.
    Harth KC, Rosen MJ. Major complications associated with xenograft biologic mesh implantation in abdominal wall reconstruction. Surg Innov. 2009;16(4):324–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Shah BC, Tiwari MM, Goede MR, Eichler MJ, Hollins RR, McBride CL, et al. Not all biologics are equal! Hernia. 2011;15(2):165–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Hiles M, Record Ritchie RD, Altizer AM. Are biologic grafts effective for hernia repair?: a systematic review of the literature. Surg Innov. 2009;16(1):26–37.PubMedCrossRefGoogle Scholar
  114. 114.
    Jin J, Rosen MJ, Blatnik J, McGee MF, Williams CP, Marks J, et al. Use of acellular dermal matrix for complicated ventral hernia repair: does technique affect outcomes? J Am Coll Surg. 2007;205(5):654–60.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Espinosa-de-los-Monteros A, de la Torre JI, Marrero I, Andrades P, Davis MR, Vasconez LO. Utilization of human cadaveric acellular dermis for abdominal hernia reconstruction. Ann Plast Surg. 2007;58(3):264–7.Google Scholar
  116. 116.
    Atema JJ, de Vries FE, Boermeester MA. Systematic review and meta-analysis of the repair of potentially contaminated and contaminated abdominal wall defects. Am J Surg. 2016;212(5):982–95.e1.Google Scholar
  117. 117.
    Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials. 2004;25(17):3541–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Oliver RF, Barker H, Cooke A, Grant RA. Dermal collagen implants. Biomaterials. 1982;3(1):38–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Mulier KE, Nguyen AH, Delaney JP, Marquez S. Comparison of Permacol and Strattice for the repair of abdominal wall defects. Hernia. 2011;15(3):315–9.PubMedCrossRefGoogle Scholar
  120. 120.
    de Castro Bras LE, Shurey S, Sibbons PD. Evaluation of crosslinked and non-crosslinked biologic prostheses for abdominal hernia repair. Hernia. 2012;16(1):77–89.PubMedCrossRefGoogle Scholar
  121. 121.
    Engelsman AF, van Dam GM, van der Mei HC, Busscher HJ, Ploeg RJ. In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg. 2010;251(1):133–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res. 2002;63(6):765–71.PubMedCrossRefGoogle Scholar
  123. 123.
    Bellon JM, Serrano N, Rodriguez M, Garcia-Honduvilla N, Pascual G, Bujan J. Composite prostheses used to repair abdominal wall defects: physical or chemical adhesion barriers? J Biomed Mater Res B Appl Biomater. 2005;74((2):718–24.CrossRefGoogle Scholar
  124. 124.
    Jenkins SD, Klamer TW, Parteka JJ, Condon REA. comparison of prosthetic materials used to repair abdominal wall defects. Surgery. 1983;94(2):392–8.PubMedGoogle Scholar
  125. 125.
    Naim JO, Pulley D, Scanlan K, Hinshaw JR, Lanzafame RJ. Reduction of postoperative adhesions to Marlex mesh using experimental adhesion barriers in rats. J Laparoendosc Surg. 1993;3(2):187–90.PubMedCrossRefGoogle Scholar
  126. 126.
    Alponat A, Lakshminarasappa SR, Teh M, Rajnakova A, Moochhala S, Goh PM, et al. Effects of physical barriers in prevention of adhesions: an incisional hernia model in rats. J Surg Res. 1997;68(2):126–32.PubMedCrossRefGoogle Scholar
  127. 127.
    Szabo A, Haj M, Waxsman I, Eitan A. Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats. Eur Surg Res. 2000;32(2):125–8.PubMedCrossRefGoogle Scholar
  128. 128.
    O’Dwyer PJ, Kingsnorth AN, Molloy RG, Small PK, Lammers B, Horeyseck G. Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair. Br J Surg. 2005;92(2):166–70.PubMedCrossRefGoogle Scholar
  129. 129.
    Klinge U, Klosterhalfen B, Conze J, Limberg W, Obolenski B, Ottinger AP, et al. Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur J Surg. 1998;164(12):951–60.PubMedCrossRefGoogle Scholar
  130. 130.
    Klosterhalfen B, Klinge U, Schumpelick V. Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials. 1998;19(24):2235–46.PubMedCrossRefGoogle Scholar
  131. 131.
    Hollinsky C, Sandberg S, Koch T, Seidler S. Biomechanical properties of lightweight versus heavyweight meshes for laparoscopic inguinal hernia repair and their impact on recurrence rates. Surg Endosc. 2008;22(12):2679–85.PubMedCrossRefGoogle Scholar
  132. 132.
    Amid PK. Shrinkage: fake or fact? In: Schumpelick V, Nhyus LM, editors. Meshes: benefits and risks. Berlin: Springer; 2004. p. 198–206.CrossRefGoogle Scholar
  133. 133.
    Farmer L, Ayoub M, Warejcka D, Southerland S, Freeman A, Solis M. Adhesion formation after intraperitoneal and extraperitoneal implantation of polypropylene mesh. Am Surg. 1998;64(2):144–6.PubMedGoogle Scholar
  134. 134.
    Deysine MX. Hernia infections: pathophysiology, diagnosis, treatment, prevention. New York: Marcel Dekker; [London: Momenta, distributor]; 2004. xxvi, 347 p.Google Scholar
  135. 135.
    Cobb WS, Burns JM, Kercher KW, Matthews BD, James Norton H, Todd Heniford B. Normal intraabdominal pressure in healthy adults. J Surg Res. 2005;129(2):231–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Klosterhalfen B, Junge K, Klinge U. The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices. 2005;2(1):103–17.PubMedCrossRefGoogle Scholar
  137. 137.
    Koch A, Bringman S, Myrelid P, Smeds S, Kald A. Randomized clinical trial of groin hernia repair with titanium-coated lightweight mesh compared with standard polypropylene mesh. Br J Surg. 2008;95(10):1226–31.PubMedCrossRefGoogle Scholar
  138. 138.
    Amid PK. Classification of biomaterials and their related complications in abdominal wall surgery. Hernia. 1997;1(1):15–21.Google Scholar
  139. 139.
    Klinge U, Klosterhalfen B. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia. 2012;16:251–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Coda A, Lamberti R, Martorana S. Classification of prosthetics used in hernia repair based on weight and biomaterial. Hernia. 2012;16(1):9–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Clarke MG, Oppong C, Simmermacher R, Park K, Kurzer M, Vanotoo L, et al. The use of sterilised polyester mosquito net mesh for inguinal hernia repair in Ghana. Hernia. 2009;13(2):155–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Daou R. Commercial mesh versus nylon mosquito net for hernia repair. World J Surg. 2007;31(4):860.PubMedCrossRefGoogle Scholar
  143. 143.
    Freudenberg S, Sano D, Ouangre E, Weiss C, Wilhelm TJ. Commercial mesh versus Nylon mosquito net for hernia repair. A randomized double-blind study in Burkina Faso. World J Surg. 2006;30(10):1784–9. discussion 90.PubMedCrossRefGoogle Scholar
  144. 144.
    Kingsnorth A. Commercial mesh vs. nylon mosquito net for hernia repair. World J Surg. 2007;31(4):859.PubMedCrossRefGoogle Scholar
  145. 145.
    Kingsnorth AN, Clarke MG, Shillcutt SD. Public health and policy issues of hernia surgery in Africa. World J Surg. 2009;33(6):1188–93.PubMedCrossRefGoogle Scholar
  146. 146.
    Shillcutt SD, Clarke MG, Kingsnorth AN. Cost-effectiveness of groin hernia surgery in the Western Region of Ghana. Arch Surg. 2010;145(10):954–61.PubMedCrossRefGoogle Scholar
  147. 147.
    Udwadia TE. Commercial mesh versus nylon mosquito net for hernia repair. A randomized double-blind study in Burkina Faso. World J Surg. 2007;31(4):858.PubMedCrossRefGoogle Scholar
  148. 148.
    Wilhelm TJ, Freudenberg S, Jonas E, Grobholz R, Post S, Kyamanywa P. Sterilized mosquito net versus commercial mesh for hernia repair. an experimental study in goats in Mbarara/Uganda. Eur Surg Res. 2007;39(5):312–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Sanders DL, Kingsnorth AN, Stephenson BM. Mosquito net mesh for abdominal wall hernioplasty: a comparison of material characteristics with commercial prosthetics. World J Surg. 2013;37(4):737–45.PubMedCrossRefGoogle Scholar
  150. 150.
    Farmer DL. Surgeon, do you know where your DALYs are?: (Can you fix a hernia with a mosquito net?): comment on “Cost-effectiveness of groin hernia surgery in the Western Region of Ghana”. Arch Surg. 2010;145(10):961.PubMedCrossRefGoogle Scholar
  151. 151.
    Löfgren J, Nordin P, Ibingira C, Matovu A, Galiwango E, Wladis A. A randomized trial of low-cost mesh in groin hernia repair. N Engl J Med. 2016;374(2):146–53.PubMedCrossRefGoogle Scholar
  152. 152.
    Darokar A, Bale K, Mulmule R, Qazi R. Study of open inguinal hernia repair by mosquito net mesh versus polypropylene mesh. Int J Res Med Sci. 2016;4(1):126–30.CrossRefGoogle Scholar
  153. 153.
    Stark E, Oestreich K, Wendl K, Rumstadt B, Hagmuller E. Nerve irritation after laparoscopic hernia repair. Surg Endosc. 1999;13(9):878–81.PubMedCrossRefGoogle Scholar
  154. 154.
    Clarke T, Katkhouda N, Mason RJ, Cheng BC, Algra J, Olasky J, et al. Fibrin glue for intraperitoneal laparoscopic mesh fixation: a comparative study in a swine model. Surg Endosc. 2011;25(3):737–48.PubMedCrossRefGoogle Scholar
  155. 155.
    Hollinsky C, Kolbe T, Walter I, Joachim A, Sandberg S, Koch T, et al. Tensile strength and adhesion formation of mesh fixation systems used in laparoscopic incisional hernia repair. Surg Endosc. 2010;24(6):1318–24.PubMedCrossRefGoogle Scholar
  156. 156.
    Joels CS, Matthews BD, Kercher KW, Austin C, Norton HJ, Williams TC, et al. Evaluation of adhesion formation, mesh fixation strength, and hydroxyproline content after intraabdominal placement of polytetrafluoroethylene mesh secured using titanium spiral tacks, nitinol anchors, and polypropylene suture or polyglactin 910 suture. Surg Endosc. 2005;19(6):780–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Schwab R, Schumacher O, Junge K, Binnebosel M, Klinge U, Becker HP, et al. Biomechanical analyses of mesh fixation in TAPP and TEP hernia repair. Surg Endosc. 2008;22(3):731–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Schwab R, Schumacher O, Junge K, Binnebosel M, Klinge U, Schumpelick V. Fibrin sealant for mesh fixation in Lichtenstein repair: biomechanical analysis of different techniques. Hernia. 2007;11(2):139–45.PubMedCrossRefGoogle Scholar
  159. 159.
    Amid PK. Radiologic images of meshoma: a new phenomenon causing chronic pain after prosthetic repair of abdominal wall hernias. Arch Surg. 2004;139(12):1297–8.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    LeBlanc KA. Tack hernia: a new entity. JSLS. 2003;7(4):383–7.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Beattie GC, Kumar S, Nixon SJ. Laparoscopic total extraperitoneal hernia repair: mesh fixation is unnecessary. J Laparoendosc Adv Surg Tech A. 2000;10(2):71–3.PubMedCrossRefGoogle Scholar
  162. 162.
    Kumar S, Wilson RG, Nixon SJ, MacIntyre IM. Chronic pain after laparoscopic and open mesh repair of groin hernia. Br J Surg. 2002;89(11):1476–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Poobalan AS, Bruce J, Smith WC, King PM, Krukowski ZH, Chambers WA. A review of chronic pain after inguinal herniorrhaphy. Clin J Pain. 2003;19(1):48–54.CrossRefPubMedGoogle Scholar
  164. 164.
    LeBlanc KA. Laparoscopic incisional and ventral hernia repair: complications-how to avoid and handle. Hernia. 2004;8(4):323–31.PubMedCrossRefGoogle Scholar
  165. 165.
    Wassenaar EB, Raymakers JT, Rakic S. Removal of transabdominal sutures for chronic pain after laparoscopic ventral and incisional hernia repair. Surg Laparosc Endosc Percutan Tech. 2007;17(6):514–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Masini BD, Stinner DJ, Waterman SM, Wenke JC. Bacterial adherence to suture materials. J Surg Educ. 2011;68(2):101–4.PubMedCrossRefGoogle Scholar
  167. 167.
    Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, et al. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg. 2006;203(4):481–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Bar A, Sauer T, Bohnert N, Goretzki PE, Lammers BJ. Less pain intensity after lichtenstein-repair by using bioglue for mesh fixation. Surg Technol Int. 2009;18:125–8.PubMedGoogle Scholar
  169. 169.
    Benizri EI, Rahili A, Avallone S, Balestro JC, Cai J, Benchimol D. Open inguinal hernia repair by plug and patch: the value of fibrin sealant fixation. Hernia. 2006;10(5):389–94.PubMedCrossRefGoogle Scholar
  170. 170.
    Birch DW, Park A. Octylcyanoacrylate tissue adhesive as an alternative to mechanical fixation of expanded polytetrafluoroethylene prosthesis. Am Surg. 2001;67(10):974–8.PubMedGoogle Scholar
  171. 171.
    Champault G, Polliand C, Dufour F, Ziol M, Behr L. A “self adhering” prosthesis for hernia repair: experimental study. Hernia. 2009;13(1):49–52.PubMedCrossRefGoogle Scholar
  172. 172.
    Dilege E, Deveci U, Erbil Y, Dinccag A, Seven R, Ozarmagan S, et al. N-butyl cyanoacrylate versus conventional suturing for fixation of meshes in an incisional hernia model. J Invest Surg. 2010;23(5):262–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Helbling C, Schlumpf R. Sutureless Lichtenstein: first results of a prospective randomised clinical trial. Hernia. 2003;7(2):80–4.PubMedCrossRefGoogle Scholar
  174. 174.
    Hidalgo M, Castillo MJ, Eymar JL, Hidalgo A. Lichtenstein inguinal hernioplasty: sutures versus glue. Hernia. 2005;9(3):242–4.PubMedCrossRefGoogle Scholar
  175. 175.
    Hollinsky C, Kolbe T, Walter I, Joachim A, Sandberg S, Koch T, et al. Comparison of a new self-gripping mesh with other fixation methods for laparoscopic hernia repair in a rat model. J Am Coll Surg. 2009;208(6):1107–14.PubMedCrossRefGoogle Scholar
  176. 176.
    Jain SK, Vindal A. Gelatin-resorcin-formalin (GRF) tissue glue as a novel technique for fixing prosthetic mesh in open hernia repair. Hernia. 2009;13(3):299–304.PubMedCrossRefGoogle Scholar
  177. 177.
    Karahasanoglu T, Onur E, Baca B, Hamzaoglu I, Pekmezci S, Boler DE, et al. Spiral tacks may contribute to intra-abdominal adhesion formation. Surg Today. 2004;34(10):860–4.PubMedCrossRefGoogle Scholar
  178. 178.
    Karatepe O, Ozturk A, Koculu S, Cagatay A, Kamali G, Aksoy M. To what extent is cyanoacrylate useful to prevent early wound infections in hernia surgery? Hernia. 2008;12(6):603–7.Google Scholar
  179. 179.
    Ladurner R, Drosse I, Seitz S, Plitz W, Barbaryka G, Siebeck M, et al. Tissue attachment strength and adhesion formation of intraabdominal fixed meshes with cyanoacrylat glues. Eur J Med Res. 2008;13(5):185–91.PubMedGoogle Scholar
  180. 180.
    Leibl BJ, Kraft B, Redecke JD, Schmedt CG, Ulrich M, Kraft K, et al. Are postoperative complaints and complications influenced by different techniques in fashioning and fixing the mesh in transperitoneal laparoscopic hernioplasty? Results of a prospective randomized trial. World J Surg. 2002;26(12):1481–4.PubMedCrossRefGoogle Scholar
  181. 181.
    Mills IW, McDermott IM, Ratliff DA. Prospective randomized controlled trial to compare skin staples and polypropylene for securing the mesh in inguinal hernia repair. Br J Surg. 1998;85(6):790–2.PubMedCrossRefGoogle Scholar
  182. 182.
    Nowobilski W, Dobosz M, Wojciechowicz T, Mionskowska L. Lichtenstein inguinal hernioplasty using butyl-2-cyanoacrylate versus sutures. Preliminary experience of a prospective randomized trial. Eur Surg Res. 2004;36(6):367–70.PubMedCrossRefGoogle Scholar
  183. 183.
    Paajanen H. Do absorbable mesh sutures cause less chronic pain than nonabsorbable sutures after Lichtenstein inguinal herniorraphy? Hernia. 2002;6(1):26–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Petter-Puchner AH, Fortelny R, Mittermayr R, Ohlinger W, Redl H. Fibrin sealing versus stapling of hernia meshes in an onlay model in the rat. Hernia. 2005;9(4):322–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Sekmen U, Gurleyik G, Kayadibi H, Saglam A. The role of suture fixation on mesh contraction after abdominal hernia repair. J Invest Surg. 2009;22(2):117–21.PubMedCrossRefGoogle Scholar
  186. 186.
    Suarez Grau JM, De Toro Crespo M, Docobo Durantez F, Rubio Chaves C, Martin Cartes JA, Docobo Perez F. Prevention of surgical infection using reabsorbable antibacterial suture (Vicryl Plus) versus reabsorbable conventional suture in hernioplasty. An experimental study in animals. Cir Esp. 2007;81(6):324–9.PubMedCrossRefGoogle Scholar
  187. 187.
    van der Zwaal P, van den Berg IR, Plaisier PW, Tutein Nolthenius RP. Mesh fixation using staples in Lichtenstein’s inguinal hernioplasty: fewer complications and fewer recurrences. Hernia. 2008;12(4):391–4.PubMedCrossRefGoogle Scholar
  188. 188.
    van't Riet M, de Vos van Steenwijk PJ, Kleinrensink GJ, Steyerberg EW, Bonjer HJ. Tensile strength of mesh fixation methods in laparoscopic incisional hernia repair. Surg Endosc. 2002;16(12):1713–6.CrossRefGoogle Scholar
  189. 189.
    Wassenaar EB, Raymakers JT, Rakic S. Impact of the mesh fixation technique on operation time in laparoscopic repair of ventral hernias. Hernia. 2008;12(1):23–5.PubMedCrossRefGoogle Scholar
  190. 190.
    Zieren J, Castenholz E, Jacobi CA, Zieren HU, Muller JM. Is mesh fixation necessary in abdominal hernia repair? Results of an experimental study in the rat. Langenbecks Arch Surg. 1999;384(1):71–5.PubMedCrossRefGoogle Scholar
  191. 191.
    Novik B, Nordin P, Skullman S, Dalenback J, Enochsson L. More recurrences after hernia mesh fixation with short-term absorbable sutures: a registry study of 82 015 Lichtenstein repairs. Arch Surg. 2011;146(1):12–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Katz S, Izhar M, Mirelman D. Bacterial adherence to surgical sutures. A possible factor in suture induced infection. Ann Surg. 1981;194(1):35–41.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Melman L, Jenkins ED, Deeken CR, Brodt MD, Brown SR, Brunt LM, et al. Evaluation of acute fixation strength for mechanical tacking devices and fibrin sealant versus polypropylene suture for laparoscopic ventral hernia repair. Surg Innov. 2010;17(4):285–90.PubMedCrossRefGoogle Scholar
  194. 194.
    Ladurner R, Drosse I, Burklein D, Plitz W, Barbaryka G, Kirchhoff C, et al. Cyanoacrylate glue for intra-abdominal mesh fixation of polypropylene-polyvinylidene fluoride meshes in a rabbit model. J Surg Res. 2011;167(2):e157–62.PubMedCrossRefGoogle Scholar
  195. 195.
    Bansal VK, Misra MC, Kumar S, Rao YK, Singhal P, Goswami A, et al. A prospective randomized study comparing suture mesh fixation versus tacker mesh fixation for laparoscopic repair of incisional and ventral hernias. Surg Endosc. 2011;25(5):1431–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Beldi G, Wagner M, Bruegger LE, Kurmann A, Candinas D. Mesh shrinkage and pain in laparoscopic ventral hernia repair: a randomized clinical trial comparing suture versus tack mesh fixation. Surg Endosc. 2011;25(3):749–55.PubMedCrossRefGoogle Scholar
  197. 197.
    Wassenaar E, Schoenmaeckers E, Raymakers J, van der Palen J, Rakic S. Mesh-fixation method and pain and quality of life after laparoscopic ventral or incisional hernia repair: a randomized trial of three fixation techniques. Surg Endosc. 2010;24(6):1296–302.PubMedCrossRefGoogle Scholar
  198. 198.
    Brill JB, Turner PL. Long-term outcomes with transfascial sutures versus tacks in laparoscopic ventral hernia repair: a review. Am Surg. 2011;77(4):458–65.PubMedGoogle Scholar
  199. 199.
    Farouk R, Drew PJ, Qureshi A, Roberts AC, Duthie GS, Monson JR. Preliminary experience with butyl-2-cyanoacrylate adhesive in tension-free inguinal hernia repair. Br J Surg. 1996;83(8):1100.PubMedCrossRefGoogle Scholar
  200. 200.
    Losi P, Burchielli S, Spiller D, Finotti V, Kull S, Briganti E, et al. Cyanoacrylate surgical glue as an alternative to suture threads for mesh fixation in hernia repair. J Surg Res. 2010;163(2):e53–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Paajanen H, Kossi J, Silvasti S, Hulmi T, Hakala T. Randomized clinical trial of tissue glue versus absorbable sutures for mesh fixation in local anaesthetic Lichtenstein hernia repair. Br J Surg. 2011.Google Scholar
  202. 202.
    Testini M, Lissidini G, Poli E, Gurrado A, Lardo D, Piccinni GA. single-surgeon randomized trial comparing sutures, N-butyl-2-cyanoacrylate and human fibrin glue for mesh fixation during primary inguinal hernia repair. Can J Surg. 2010;53(3):155–60.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Lee MG, Jones D. Applications of fibrin sealant in surgery. Surg Innov. 2005;12(3):203–13.PubMedCrossRefGoogle Scholar
  204. 204.
    Chevrel JP, Rath AM. The use of fibrin glues in the surgical treatment of incisional hernias. Hernia. 1997;1(1):9–14.CrossRefGoogle Scholar
  205. 205.
    Morales-Conde S, Barranco A, Socas M, Alarcon I, Grau M, Casado MA. Systematic review of the use of fibrin sealant in abdominal-wall repair surgery. Hernia. 2011;15(4):361–9.PubMedCrossRefGoogle Scholar
  206. 206.
    Schwab R, Willms A, Kroger A, Becker HP. Less chronic pain following mesh fixation using a fibrin sealant in TEP inguinal hernia repair. Hernia. 2006;10(3):272–7.PubMedCrossRefGoogle Scholar
  207. 207.
    Katkhouda N, Mavor E, Friedlander MH, Mason RJ, Kiyabu M, Grant SW, et al. Use of fibrin sealant for prosthetic mesh fixation in laparoscopic extraperitoneal inguinal hernia repair. Ann Surg. 2001;233(1):18–25.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Eriksen JR, Bech JI, Linnemann D, Rosenberg J. Laparoscopic intraperitoneal mesh fixation with fibrin sealant (Tisseel) vs. titanium tacks: a randomised controlled experimental study in pigs. Hernia. 2008;12(5):483–91.PubMedCrossRefGoogle Scholar
  209. 209.
    Suarez-Grau JM, Morales-Conde S, Martin-Cartes JA, Chaves CR, Jimenez MB, Ramirez FP, et al. Mesh fixation with sutures versus fibrin sealant in hernioplasty with re-absorbable prosthesis (polyglycolic acid and trimethylene carbonate). Experimental study in animals. Cir Esp. 2009;86(4):242–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Grommes J, Binnebosel M, Klink CD, von Trotha KT, Junge K, Conze J. Different methods of mesh fixation in open retromuscular incisional hernia repair: a comparative study in pigs. Hernia. 2010;14(6):623–7.PubMedCrossRefGoogle Scholar
  211. 211.
    Lovisetto F, Zonta S, Rota E, Mazzilli M, Bardone M, Bottero L, et al. Use of human fibrin glue (Tissucol) versus staples for mesh fixation in laparoscopic transabdominal preperitoneal hernioplasty: a prospective, randomized study. Ann Surg. 2007;245(2):222–31.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Lau H. Fibrin sealant versus mechanical stapling for mesh fixation during endoscopic extraperitoneal inguinal hernioplasty: a randomized prospective trial. Ann Surg. 2005;242(5):670–5.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Ceccarelli G, Casciola L, Pisanelli MC, Bartoli A, Di Zitti L, Spaziani A, et al. Comparing fibrin sealant with staples for mesh fixation in laparoscopic transabdominal hernia repair: a case control-study. Surg Endosc. 2008;22(3):668–73.PubMedCrossRefGoogle Scholar
  214. 214.
    Langrehr JM, Schmidt SC, Neuhaus P. Initial experience with the use of fibrin sealant for the fixation of the prosthetic mesh in laparoscopic transabdominal preperitoneal hernia repair. Rozhl Chir. 2005;84(8):399–402.PubMedGoogle Scholar
  215. 215.
    Wong JU, Leung TH, Huang CC, Huang CS. Comparing chronic pain between fibrin sealant and suture fixation for bilayer polypropylene mesh inguinal hernioplasty: a randomized clinical trial. Am J Surg. 2011;202(1):34–8.PubMedCrossRefGoogle Scholar
  216. 216.
    Olmi S, Scaini A, Erba L, Guaglio M, Croce E. Quantification of pain in laparoscopic transabdominal preperitoneal (TAPP) inguinal hernioplasty identifies marked differences between prosthesis fixation systems. Surgery. 2007;142(1):40–6.PubMedCrossRefGoogle Scholar
  217. 217.
    Schug-Pass C, Lippert H, Kockerling F. Mesh fixation with fibrin glue (Tissucol/Tisseel) in hernia repair dependent on the mesh structure—is there an optimum fibrin-mesh combination?—investigations on a biomechanical model. Langenbecks Arch Surg. 2010;395(5):569–74.PubMedCrossRefGoogle Scholar
  218. 218.
    Fortelny RH, Petter-Puchner AH, Ferguson J, Gruber-Blum S, Brand J, Mika K, et al. A comparative biomechanical evaluation of hernia mesh fixation by fibrin sealant. J Surg Res. 2010.Google Scholar
  219. 219.
    Topart P, Vandenbroucke F, Lozac’h P. Tisseel versus tack staples as mesh fixation in totally extraperitoneal laparoscopic repair of groin hernias: a retrospective analysis. Surg Endosc. 2005;19(5):724–7.PubMedCrossRefGoogle Scholar
  220. 220.
    Campanelli G, Pascual MH, Hoeferlin A, Rosenberg J, Champault G, Kingsnorth A, et al. Randomized, controlled, blinded trial of Tisseel/Tissucol for mesh fixation in patients undergoing Lichtenstein technique for primary inguinal hernia repair: results of the TIMELI trial. Ann Surg. 2012;255(4):650–7.CrossRefPubMedGoogle Scholar
  221. 221.
    Kingsnorth AN, Shahid MK, Valliattu AJ, Hadden RA, Porter CS. Open onlay mesh repair for major abdominal wall hernias with selective use of components separation and fibrin sealant. World J Surg. 2008;32(1):26–30.PubMedCrossRefGoogle Scholar
  222. 222.
    Fernandez Lobato R, Garcia Septiem J, Ortega Deballon P, Martin Lucas FJ, Ruiz de Adana JC, Limones Esteban M. Tissucol application in dermolipectomy and incisional hernia repair. Int Surg. 2001;86(4):240–5.PubMedGoogle Scholar
  223. 223.
    Katkhouda N. A new technique for laparoscopic hernia repair using fibrin sealant. Surg Technol Int. 2004;12:120–6.PubMedGoogle Scholar
  224. 224.
    Santoro E, Agresta F, Buscaglia F, Mulieri G, Mazzarolo G, Bedin N, et al. Preliminary experience using fibrin glue for mesh fixation in 250 patients undergoing minilaparoscopic transabdominal preperitoneal hernia repair. J Laparoendosc Adv Surg Tech A. 2007;17(1):12–5.PubMedCrossRefGoogle Scholar
  225. 225.
    Amid PK. Prospective randomized controlled trial to compare skin staples and polypropylene for securing the mesh in inguinal hernia repair. Br J Surg. 1999;86(1):139.PubMedCrossRefGoogle Scholar
  226. 226.
    RoshanLall C, Hutchinson GH. Prospective randomized controlled trial to compare skin staples and polypropylene for securing the mesh in inguinal hernia repair. Br J Surg. 1998;85(10):1451.PubMedGoogle Scholar
  227. 227.
    Kingsnorth AN. Use of skin staples for securing the mesh in the Lichtenstein repair of inguinal hernia. Ann R Coll Surg Engl. 1996;78(4):398.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Fligelstone L, Wanendeya N, Palmer B. Use of skin staples for securing the mesh in the Lichtenstein repair of inguinal hernia. Ann R Coll Surg Engl. 1996;78(4):398.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Cheek C. Use of skin staples for securing the mesh in the Lichtenstein repair of inguinal hernia. Ann R Coll Surg Engl. 1996;78(4):398.PubMedPubMedCentralGoogle Scholar
  230. 230.
    Gould SW. Use of skin staples for securing the mesh in the Lichtenstein repair of inguinal hernia. Ann R Coll Surg Engl. 1996;78(3 Pt 1):235.Google Scholar
  231. 231.
    Ackroyd R, Morris IR. Use of skin staples for securing the mesh in the Lichtenstein repair of inguinal hernia. Ann R Coll Surg Engl. 1996;78(3 Pt 1):235.Google Scholar
  232. 232.
    Andrews SM, Brooks A, Mason RC. Laparoscopic hernia repair without the use of staples or knotting manoeuvres. Br J Surg. 1996;83(5):712–3.PubMedCrossRefGoogle Scholar
  233. 233.
    Egger B, Fawcett J, Dowling BL. Use of skin staples for securing the mesh in the Lichtenstein repair of inguinal hernia. Ann R Coll Surg Engl. 1996;78(1):63–4.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Dunn DC. Laparoscopic hernia repair without the use of staples or knotting manoeuvres. Br J Surg. 1995;82(12):1692.PubMedCrossRefGoogle Scholar
  235. 235.
    Powell JJ, Murray GD, O’Dwyer PJ. Evaluation of staples and prostheses for use in laparoscopic inguinal hernia repair. J Laparoendosc Surg. 1994;4(2):109–12.PubMedCrossRefGoogle Scholar
  236. 236.
    Charara J, Dion YM, Guidoin R. Mechanical characterization of endoscopic surgical staples during an experimental hernia repair. Clin Mater. 1994;16(2):81–9.PubMedCrossRefGoogle Scholar
  237. 237.
    Memon MA. Lichtenstein tension free hernioplasty for the repair of primary and recurrent inguinal hernia. In: Fitzgibbons RJ, Greenburg AG, editors. Nyhus and Condon’s hernia. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 156–7.Google Scholar
  238. 238.
    Lau H, Patil NG. Selective non-stapling of mesh during unilateral endoscopic total extraperitoneal inguinal hernioplasty: a case-control study. Arch Surg. 2003;138(12):1352–5.PubMedCrossRefGoogle Scholar
  239. 239.
    Moreno-Egea A, Torralba Martinez JA, Morales Cuenca G, Aguayo Albasini JL. Randomized clinical trial of fixation vs nonfixation of mesh in total extraperitoneal inguinal hernioplasty. Arch Surg. 2004;139(12):1376–9.PubMedCrossRefGoogle Scholar
  240. 240.
    Smith AI, Royston CM, Sedman PC. Stapled and nonstapled laparoscopic transabdominal preperitoneal (TAPP) inguinal hernia repair. A prospective randomized trial. Surg Endosc. 1999;13(8):804–6.PubMedCrossRefGoogle Scholar
  241. 241.
    Ferzli GS, Frezza EE, Pecoraro AM Jr, Ahern KD. Prospective randomized study of stapled versus unstapled mesh in a laparoscopic preperitoneal inguinal hernia repair. J Am Coll Surg. 1999;188(5):461–5.Google Scholar
  242. 242.
    Jenkins ED, Melman L, Desai S, Deeken CR, Greco SC, Frisella MM, et al. Histologic evaluation of absorbable and non-absorbable barrier coated mesh secured to the peritoneum with fibrin sealant in a New Zealand white rabbit model. Hernia. 2011.Google Scholar
  243. 243.
    Rieder E, Stoiber M, Scheikl V, Poglitsch M, Dal Borgo A, Prager G, et al. Mesh fixation in laparoscopic incisional hernia repair: glue fixation provides attachment strength similar to absorbable tacks but differs substantially in different meshes. J Am Coll Surg. 2011;212(1):80–6.PubMedCrossRefGoogle Scholar
  244. 244.
    Byrd JF, Agee N, Swan RZ, Lau KN, Heath JJ, McKillop IH, et al. Evaluation of absorbable and permanent mesh fixation devices: adhesion formation and mechanical strength. Hernia. 2011.Google Scholar
  245. 245.
    Duffy AJ, Hogle NJ, LaPerle KM, Fowler DL. Comparison of two composite meshes using two fixation devices in a porcine laparoscopic ventral hernia repair model. Hernia. 2004;8(4):358–64.PubMedCrossRefGoogle Scholar
  246. 246.
    Garg P, Nair S, Shereef M, Thakur JD, Nain N, Menon GR, et al. Mesh fixation compared to nonfixation in total extraperitoneal inguinal hernia repair: a randomized controlled trial in a rural center in India. Surg Endosc. 2011.Google Scholar
  247. 247.
    Koch CA, Greenlee SM, Larson DR, Harrington JR, Farley DR. Randomized prospective study of totally extraperitoneal inguinal hernia repair: fixation versus no fixation of mesh. JSLS. 2006;10(4):457–60.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Taylor C, Layani L, Liew V, Ghusn M, Crampton N, White S. Laparoscopic inguinal hernia repair without mesh fixation, early results of a large randomised clinical trial. Surg Endosc. 2008;22(3):757–62.PubMedCrossRefGoogle Scholar
  249. 249.
    Ismail M, Garg P. Laparoscopic inguinal total extraperitoneal hernia repair under spinal anesthesia without mesh fixation in 1,220 hernia repairs. Hernia. 2009;13(2):115–9.PubMedCrossRefGoogle Scholar
  250. 250.
    Bittner R, Arregui ME, Bisgaard T, Dudai M, Ferzli GS, Fitzgibbons RJ, et al. Guidelines for laparoscopic (TAPP) and endoscopic (TEP) treatment of inguinal Hernia [International Endohernia Society (IEHS)]. Surg Endosc. 2011.Google Scholar
  251. 251.
    Tam KW, Liang HH, Chai CY. Outcomes of staple fixation of mesh versus nonfixation in laparoscopic total extraperitoneal inguinal repair: a meta-analysis of randomized controlled trials. World J Surg. 2010;34(12):3065–74.PubMedCrossRefGoogle Scholar
  252. 252.
    Teng YJ, Pan SM, Liu YL, Yang KH, Zhang YC, Tian JH, et al. A meta-analysis of randomized controlled trials of fixation versus nonfixation of mesh in laparoscopic total extraperitoneal inguinal hernia repair. Surg Endosc. 2011.Google Scholar
  253. 253.
    Sajid MS, Ladwa N, Kalra L, Hutson K, Sains P, Baig MK. A meta-analysis examining the use of tacker fixation versus no-fixation of mesh in laparoscopic inguinal hernia repair. Int J Surg. 2012;10(5):224–31.PubMedCrossRefGoogle Scholar
  254. 254.
    Chastan P. Tension-free open hernia repair using an innovative self-gripping semi-resorbable mesh. Hernia. 2009;13(2):137–42.PubMedCrossRefGoogle Scholar
  255. 255.
    Garcia Urena MA, Hidalgo M, Feliu X, Velasco MA, Revuelta S, Gutierrez R, et al. Multicentric observational study of pain after the use of a self-gripping lightweight mesh. Hernia. 2011.Google Scholar
  256. 256.
    Champault G, Torcivia A, Paolino L, Chaddad W, Lacaine F, Barrat C. A self-adhering mesh for inguinal hernia repair: preliminary results of a prospective, multicenter study. Hernia. 2011.Google Scholar
  257. 257.
    Kosai N, Sutton PA, Evans J, Varghese J. Laparoscopic preperitoneal mesh repair using a novel self-adhesive mesh. J Minim Access Surg. 2011;7(3):192–4.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Klobusicky P, Hoskovec D. Reduction of chronic post-herniotomy pain and recurrence rate. Use of the anatomical self-gripping ProGrip laparoscopic mesh in TAPP hernia repair. Preliminary results of a prospective study. Wideochir Inne Tech Maloinwazyjne. 2015;10(3):373–81.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Kapischke M, Schulze H, Caliebe A. Self-fixating mesh for the Lichtenstein procedure—a prestudy. Langenbecks Arch Surg. 2010;395(4):317–22.PubMedCrossRefGoogle Scholar
  260. 260.
    Sanders DL, Waydia S. A systematic review of randomised control trials assessing mesh fixation in open inguinal hernia repair. Hernia. 2014;18(2):165–76.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Northern Devon Healthcare TrustBarnstapleDevonUK

Personalised recommendations