Secure Random Number Generation in Continuous Variable Systems

  • Jing Yan HawEmail author
  • Syed M. Assad
  • Ping Koy Lam
Part of the Quantum Science and Technology book series (QST)


Intrinsic uncertainty is a distinctive feature of quantum physics, which can be used to harness high-quality randomness. However, in realistic scenarios, the raw output of a quantum random-number generator (QRNG) is inevitably tainted by classical technical noise. The integrity of such a device can be compromised if this noise is tampered with, or even controlled by some malicious parties. In this chapter, we first briefly discuss how the quantum randomness can be characterised via information theoretic approaches, namely by quantifying the Shannon entropy and min-entropy. We then consider several ways where classical side-information can be taken into account via these quantities in a continuous-variable QRNG. Next, we focus on side-information independent randomness that is quantified by min-entropy conditioned on the classical noise. To this end, we present a method for maximizing the conditional min-entropy from a given quantum-to-classical-noise ratio. We demonstrate our approach on a vacuum state CV-QRNG. Lastly, we highlight several recent developments in the quest of developing secure CV-QRNG.


Continuous variable quantum information Quantum random number generation Entropy quantification 


  1. 1.
    Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., et al. (2014). Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics Express, 22(2), 1645–1654.CrossRefGoogle Scholar
  2. 2.
    Abellán, C., Amaya, W., Mitrani, D., Pruneri, V., & Mitchell, M. W. (2015). Generation of fresh and pure random numbers for loophole-free bell tests. Physical Review Letters, 115(25), 250403.CrossRefGoogle Scholar
  3. 3.
    Barak, B., Shaltiel, R., & Tromer, E. (2003). True random number generators secure in a changing environment (pp. 166–180)Google Scholar
  4. 4.
    Barker, E., & Kelsey, J. (2012). Recommendation for the entropy sources used for random bit generation. NIST DRAFT Special Publication 800-90BGoogle Scholar
  5. 5.
    Bera, M. N., Acín, A., Kuś, M., Mitchell, M. W., & Lewenstein, M. (2017). Randomness in quantum mechanics: Philosophy, physics and technology. Reports on Progress in Physics, 80(12), 124001.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Born, M. (1926). Quantenmechanik der stoßvorgänge. Zeitschrift für Physik, 38(11–12), 803–827.zbMATHCrossRefGoogle Scholar
  7. 7.
    Bustard, P. J., England, D. G., Nunn, J., Moffatt, D., Spanner, M., Lausten, R., et al. (2013). Quantum random bit generation using energy fluctuations in stimulated raman scattering. Optics Express, 21(24), 29350–29357.CrossRefGoogle Scholar
  8. 8.
    Calude, C. S., Dinneen, M. J., Dumitrescu, M., & Svozil, K. (2010). Experimental evidence of quantum randomness incomputability. Physical Review A, 82(2), 022102.CrossRefGoogle Scholar
  9. 9.
    Christensen, B., McCusker, K., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., et al. (2013). Detection-loophole-free test of quantum nonlocality, and applications. Physical Review Letters, 111(13), 130406.CrossRefGoogle Scholar
  10. 10.
    Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley.Google Scholar
  11. 11.
    De, A., Portmann, C., Vidick, T., & Renner, R. (2012). Trevisan’s extractor in the presence of quantum side information. SIAM Journal on Computing, 41(4), 915–940.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dodis, Y., Ostrovsky, R., Reyzin, L., & Smith, A. (2008). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1), 97–139.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dynes, J. F., Yuan, Z. L., Sharpe, A. W., & Shields, A. J. (2008). A high speed, postprocessing free, quantum random number generator. Applied Physics Letters, 93(3), 031109.CrossRefGoogle Scholar
  14. 14.
    Fiorentino, M., Santori, C., Spillane, S., Beausoleil, R., & Munro, W. (2007). Secure self-calibrating quantum random-bit generator. Physical Review A, 75(3), 032334.CrossRefGoogle Scholar
  15. 15.
    Frauchiger, D., Renner, R., & Troyer, M. (2013). True randomness from realistic quantum devices. arXiv:1311.4547
  16. 16.
    Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U. L., et al. (2010). A generator for unique quantum random numbers based on vacuum states. Nature Photonics, 4(10), 711–715.CrossRefGoogle Scholar
  17. 17.
    Giustina, M., Versteegh, M. A., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., et al. (2015). Significant-loophole-free test of bell’s theorem with entangled photons. Physical Review Letters, 115(25), 250401.CrossRefGoogle Scholar
  18. 18.
    Guo, H., Tang, W., Liu, Y., & Wei, W. (2010). Truly random number generation based on measurement of phase noise of a laser. Physical Review E, 81(5), 051137.CrossRefGoogle Scholar
  19. 19.
    Hart, J. D., Terashima, Y., Uchida, A., Baumgartner, G. B., Murphy, T. E., & Roy, R. (2017). Recommendations and illustrations for the evaluation of photonic random number generators. APL Photonics, 2(9), 090901.CrossRefGoogle Scholar
  20. 20.
    Haw, J. Y., Assad, S. M., Lance, A. M., Ng, N. H. Y., Sharma, V., Lam, P. K., et al. (2015). Maximization of extractable randomness in a quantum random-number generator. Physical Review Applied, 3, 054004.Google Scholar
  21. 21.
    Hensen, B., Bernien, H., Dréau, A. E., Reiserer, A., Kalb, N., Blok, M. S., et al. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 km. Nature, 526(7575), 682–686CrossRefGoogle Scholar
  22. 22.
    Isida, M., & Ikeda, H. (1956). Random number generator. Annals of the Institute of Statistical Mathematics, 8(1), 119–126.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., & Zeilinger, A. (2000). A fast and compact quantum random number generator. Review of Scientific Instruments, 71(4), 1675–1680.CrossRefGoogle Scholar
  24. 24.
    Kanter, I., Aviad, Y., Reidler, I., Cohen, E., & Rosenbluh, M. (2010). An optical ultrafast random bit generator. Nature Photonics, 4(1), 58–61.CrossRefGoogle Scholar
  25. 25.
    Kinzel, W., & Reents, G. (1996). Physik per computer. Spektrum Akademischer Verlag, Heidelberg, 22, 33–35.Google Scholar
  26. 26.
    Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā: The Indian Journal of Statistics, Series A, 369–376Google Scholar
  27. 27.
    Konig, R., Renner, R., & Schaffner, C. (2009). The operational meaning of min-and max-entropy. IEEE Transactions on Information Theory, 55(9), 4337–4347.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Law, Y. Z., Bancal, J. D., Scarani, V., et al. (2014). Quantum randomness extraction for various levels of characterization of the devices. Journal of Physics A: Mathematical and Theoretical, 47(42), 424028.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Liu, Y., Zhu, M., Luo, B., Zhang, J., & Guo, H. (2013). Implementation of 1.6 Tb s\(^{-1}\) truly random number generation based on a super-luminescent emitting diode. Laser Physics Letters, 10(4), 045001Google Scholar
  30. 30.
    Lunghi, T., Brask, J. B., Lim, C. C. W., Lavigne, Q., Bowles, J., Martin, A., et al. (2015). Self-testing quantum random number generator. Physical Review Letters, 114(15), 150501.CrossRefGoogle Scholar
  31. 31.
    Ma, X., Xu, F., Xu, H., Tan, X., Qi, B., & Lo, H. K. (2013). Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Physical Review A, 87(6).Google Scholar
  32. 32.
    Ma, X., Yuan, X., Cao, Z., Qi, B., & Zhang, Z. (2016). Quantum random number generation. npj Quantum Information, 2, 16021Google Scholar
  33. 33.
    Marangon, D. G., Vallone, G., & Villoresi, P. (2017). Source-device-independent ultrafast quantum random number generation. Physical Review Letters, 118(6), 060503.CrossRefGoogle Scholar
  34. 34.
    Marangon, D., Vallone, G., & Villoresi, P. (2014). Random bits, true and unbiased, from atmospheric turbulence. Scientific Reports, 4, 5490.CrossRefGoogle Scholar
  35. 35.
    Marsaglia, G. (1968). Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences, 61(1), 25–28.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Marsaglia, G. (1998). Diehard test suiteGoogle Scholar
  37. 37.
    Martin-Löf, P. (1966). The definition of random sequences. Information and Control, 9(6), 602–619.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Mauerer, W., Portmann, C., & Scholz, V. B. (2012). A modular framework for randomness extraction based on trevisan’s construction. arXiv:1212.0520
  39. 39.
    Michel, T., Haw, J. Y., Marangon, D. G., Thearle, O., Vallone, G., Villoresi, P., et al. (2019). Physical Review Applied, 12, 034017Google Scholar
  40. 40.
    Mitchell, M. W., Abellan, C., & Amaya, W. (2015). Strong experimental guarantees in ultrafast quantum random number generation. Physical Review A, 91(1), 012314.CrossRefGoogle Scholar
  41. 41.
    Oliver, N., Soriano, M. C., Sukow, D. W., & Fischer, I. (2013). Fast random bit generation using a chaotic laser: Approaching the information theoretic limit. IEEE Journal of Quantum Electronics, 49(11), 910–918.Google Scholar
  42. 42.
    Pironio, S., Acín, A., Massar, S., de La Giroday, A. B., Matsukevich, D. N., Maunz, P., et al. (2010). Random numbers certified by bell’s theorem. Nature, 464(7291), 1021–1024.CrossRefGoogle Scholar
  43. 43.
    Pironio, S., & Massar, S. (2013). Security of practical private randomness generation. Physical Review A, 87(1), 012336.CrossRefGoogle Scholar
  44. 44.
    Qi, B. (2017). True randomness from an incoherent source. Review of Scientific Instruments, 88(11), 113101.CrossRefGoogle Scholar
  45. 45.
    Qi, B., Chi, Y. M., Lo, H. K., & Qian, L. (2010). High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35(3), 312–314.CrossRefGoogle Scholar
  46. 46.
    Renner, R. (2008). Security of quantum key distribution. International Journal of Quantum Information, 6(01), 1–127.zbMATHCrossRefGoogle Scholar
  47. 47.
    Sanguinetti, B., Martin, A., Zbinden, H., & Gisin, N. (2014). Quantum random number generation on a mobile phone. Physical Review X, 4, 031056.Google Scholar
  48. 48.
    Shalm, L. K., Meyer-Scott, E., Christensen, B. G., Bierhorst, P., Wayne, M. A., Stevens, M. J., et al. (2015). Strong loophole-free test of local realism. Physical Review Letters, 115(25), 250402.CrossRefGoogle Scholar
  49. 49.
    Shaltiel, R. (2002). Recent developments in explicit constructions of extractors. Bulletin of the EATCS, 77, 67–95.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Shen, Y., Tian, L., & Zou, H. (2010). Practical quantum random number generator based on measuring the shot noise of vacuum states. Physical Review A, 81(6), 063814.CrossRefGoogle Scholar
  52. 52.
    Stipcevic, M. (2012). Quantum random number generators and their applications in cryptography. In SPIE Defense, Security, and Sensing (p. 837504). International Society for Optics and PhotonicsGoogle Scholar
  53. 53.
    Stipčević, M., & Rogina, B. M. (2007). Quantum random number generator based on photonic emission in semiconductors. Review of Scientific Instruments, 78(4), 045104.CrossRefGoogle Scholar
  54. 54.
    Sunar, B., Martin, W. J., & Stinson, D. R. (2007). A provably secure true random number generator with built-in tolerance to active attacks. IEEE Transactions on Computers, 56(1), 109–119.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Svozil, K. (2009). Three criteria for quantum random-number generators based on beam splitters. Physical Review A, 79(5), 054306.CrossRefGoogle Scholar
  56. 56.
    Symul, T., Assad, S., & Lam, P. K. (2011). Real time demonstration of high bitrate quantum random number generation with coherent laser light. Applied Physics Letters, 98(23), 231103.CrossRefGoogle Scholar
  57. 57.
    Tomamichel, M., Schaffner, C., Smith, A., & Renner, R. (2011). Leftover hashing against quantum side information. IEEE Transactions on Information Theory, 57(8), 5524–5535.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., et al. (2008). Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2(12), 728–732.CrossRefGoogle Scholar
  59. 59.
    Vallone, G., Marangon, D. G., Tomasin, M., & Villoresi, P. (2014). Quantum randomness certified by the uncertainty principle. Physical Review A, 90(5), 052327.CrossRefGoogle Scholar
  60. 60.
    Wahl, M., Leifgen, M., Berlin, M., Röhlicke, T., Rahn, H. J., & Benson, O. (2011). An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Applied Physics Letters, 98(17), 171105.CrossRefGoogle Scholar
  61. 61.
    Wayne, M. A., & Kwiat, P. G. (2010). Low-bias high-speed quantum random number generator via shaped optical pulses. Optics Express, 18(9), 9351–9357.CrossRefGoogle Scholar
  62. 62.
    Williams, C. R., Salevan, J. C., Li, X., Roy, R., & Murphy, T. E. (2010). Fast physical random number generator using amplified spontaneous emission. Optics Express, 18(23), 23584–23597.CrossRefGoogle Scholar
  63. 63.
    Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., & Lo, H. K. (2012). Ultrafast quantum random number generation based on quantum phase fluctuations. Optics Express, 20(11), 12366–12377.CrossRefGoogle Scholar
  64. 64.
    Xu, P., Wong, Y., Horiuchi, T., & Abshire, P. (2006). Compact floating-gate true random number generator. Electronics Letters, 42(23), 1346–1347.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Quantum Computation and Communication Technology, Department of Quantum ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations